Gradient Boosted Machine Learning Model to Predict H2, CH4, and CO2 Uptake in Metal–Organic Frameworks Using Experimental Data

推论 实验数据 航程(航空) 金属有机骨架 计算机科学 工作(物理) 平均绝对误差 机器学习 人工智能 数据挖掘 化学 材料科学 热力学 数学 均方误差 统计 物理 吸附 物理化学 复合材料
作者
Tom Bailey,Adam Jackson,Razvan-Antonio Berbece,Ke‐Jun Wu,Nicole Hondow,Elaine Martin
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (15): 4545-4551 被引量:10
标识
DOI:10.1021/acs.jcim.3c00135
摘要

Predictive screening of metal–organic framework (MOF) materials for their gas uptake properties has been previously limited by using data from a range of simulated sources, meaning the final predictions are dependent on the performance of these original models. In this work, experimental gas uptake data has been used to create a Gradient Boosted Tree model for the prediction of H2, CH4, and CO2 uptake over a range of temperatures and pressures in MOF materials. The descriptors used in this database were obtained from the literature, with no computational modeling needed. This model was repeated 10 times, showing an average R2 of 0.86 and a mean absolute error (MAE) of ±2.88 wt % across the runs. This model will provide gas uptake predictions for a range of gases, temperatures, and pressures as a one-stop solution, with the data provided being based on previous experimental observations in the literature, rather than simulations, which may differ from their real-world results. The objective of this work is to create a machine learning model for the inference of gas uptake in MOFs. The basis of model development is experimental as opposed to simulated data to realize its applications by practitioners. The real-world nature of this research materializes in a focus on the application of algorithms as opposed to the detailed assessment of the algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
WMT完成签到 ,获得积分10
1秒前
山有扶苏完成签到,获得积分10
3秒前
fyy完成签到 ,获得积分10
3秒前
kento发布了新的文献求助10
3秒前
3秒前
4秒前
王梦秋发布了新的文献求助10
4秒前
清晨发布了新的文献求助10
4秒前
4秒前
白青完成签到,获得积分10
4秒前
5秒前
粗暴的又槐完成签到,获得积分20
5秒前
Captainhana发布了新的文献求助10
5秒前
6秒前
yyy完成签到 ,获得积分10
7秒前
8秒前
香菜完成签到,获得积分10
8秒前
小二郎应助lhy采纳,获得10
9秒前
细小完成签到,获得积分10
10秒前
FashionBoy应助zimo采纳,获得10
10秒前
10秒前
今后应助kid采纳,获得10
11秒前
11秒前
Brown完成签到,获得积分10
12秒前
zzz发布了新的文献求助10
12秒前
xiaoliu完成签到,获得积分10
13秒前
13秒前
14秒前
dglyl发布了新的文献求助10
14秒前
科研通AI6应助lc采纳,获得10
15秒前
16秒前
自觉的丹珍完成签到,获得积分10
16秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
17秒前
18秒前
崽崽发布了新的文献求助10
19秒前
无花果应助背后的广山采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646490
求助须知:如何正确求助?哪些是违规求助? 4771445
关于积分的说明 15035283
捐赠科研通 4805288
什么是DOI,文献DOI怎么找? 2569581
邀请新用户注册赠送积分活动 1526573
关于科研通互助平台的介绍 1485858