Gradient Boosted Machine Learning Model to Predict H2, CH4, and CO2 Uptake in Metal–Organic Frameworks Using Experimental Data

推论 实验数据 航程(航空) 金属有机骨架 计算机科学 工作(物理) 平均绝对误差 机器学习 人工智能 数据挖掘 化学 材料科学 热力学 数学 均方误差 统计 物理 吸附 物理化学 复合材料
作者
Tom Bailey,Adam Jackson,Razvan-Antonio Berbece,Ke‐Jun Wu,Nicole Hondow,Elaine Martin
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (15): 4545-4551 被引量:10
标识
DOI:10.1021/acs.jcim.3c00135
摘要

Predictive screening of metal–organic framework (MOF) materials for their gas uptake properties has been previously limited by using data from a range of simulated sources, meaning the final predictions are dependent on the performance of these original models. In this work, experimental gas uptake data has been used to create a Gradient Boosted Tree model for the prediction of H2, CH4, and CO2 uptake over a range of temperatures and pressures in MOF materials. The descriptors used in this database were obtained from the literature, with no computational modeling needed. This model was repeated 10 times, showing an average R2 of 0.86 and a mean absolute error (MAE) of ±2.88 wt % across the runs. This model will provide gas uptake predictions for a range of gases, temperatures, and pressures as a one-stop solution, with the data provided being based on previous experimental observations in the literature, rather than simulations, which may differ from their real-world results. The objective of this work is to create a machine learning model for the inference of gas uptake in MOFs. The basis of model development is experimental as opposed to simulated data to realize its applications by practitioners. The real-world nature of this research materializes in a focus on the application of algorithms as opposed to the detailed assessment of the algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助荡秋千的猴子采纳,获得10
1秒前
街上的纸屑完成签到 ,获得积分20
3秒前
3秒前
英姑应助机灵白桃采纳,获得30
4秒前
4秒前
略略略完成签到,获得积分10
4秒前
5秒前
预知子发布了新的文献求助10
5秒前
Bio应助研途者采纳,获得50
6秒前
Hello应助坚强慕蕊采纳,获得10
7秒前
饼饼发布了新的文献求助10
7秒前
plant发布了新的文献求助10
9秒前
Shilly发布了新的文献求助10
10秒前
10秒前
liu123完成签到,获得积分10
11秒前
闫富扬完成签到,获得积分20
12秒前
哒哒李完成签到,获得积分10
13秒前
xyb发布了新的文献求助10
13秒前
传奇3应助饼饼采纳,获得10
16秒前
17秒前
18秒前
18秒前
坚强慕蕊发布了新的文献求助10
21秒前
小康发布了新的文献求助10
22秒前
22秒前
Bio应助青云客采纳,获得50
23秒前
陈陈完成签到,获得积分10
24秒前
fengwx完成签到,获得积分10
24秒前
27秒前
小宋同学应助小康采纳,获得10
29秒前
领导范儿应助张雨兴采纳,获得10
30秒前
锌迹完成签到,获得积分20
30秒前
田様应助Deanna采纳,获得10
30秒前
32秒前
锌迹发布了新的文献求助10
33秒前
Cmiudz完成签到,获得积分10
37秒前
39秒前
39秒前
41秒前
41秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979693
求助须知:如何正确求助?哪些是违规求助? 3523666
关于积分的说明 11218291
捐赠科研通 3261174
什么是DOI,文献DOI怎么找? 1800485
邀请新用户注册赠送积分活动 879103
科研通“疑难数据库(出版商)”最低求助积分说明 807167