Tikhonov正则化
正规化(语言学)
人工神经网络
趋同(经济学)
功能(生物学)
电阻抗
电压
计算机科学
算法
噪音(视频)
电阻抗断层成像
应用数学
反问题
收敛速度
电导率
数学
数学优化
物理
数学分析
人工智能
电信
图像(数学)
频道(广播)
量子力学
进化生物学
经济
经济增长
生物
作者
Chenguang Duan,Yuling Jiao,Xiliang Lu,Jerry Zhijian Yang
出处
期刊:Cornell University - arXiv
日期:2023-01-01
被引量:1
标识
DOI:10.48550/arxiv.2306.13881
摘要
In this paper, we introduce CDII-PINNs, a computationally efficient method for solving CDII using PINNs in the framework of Tikhonov regularization. This method constructs a physics-informed loss function by merging the regularized least-squares output functional with an underlying differential equation, which describes the relationship between the conductivity and voltage. A pair of neural networks representing the conductivity and voltage, respectively, are coupled by this loss function. Then, minimizing the loss function provides a reconstruction. A rigorous theoretical guarantee is provided. We give an error analysis for CDII-PINNs and establish a convergence rate, based on prior selected neural network parameters in terms of the number of samples. The numerical simulations demonstrate that CDII-PINNs are efficient, accurate and robust to noise levels ranging from $1\%$ to $20\%$.
科研通智能强力驱动
Strongly Powered by AbleSci AI