Insulator Image Dataset Generation based on Generative Adversarial Network

对抗制 生成语法 计算机科学 生成对抗网络 人工智能 机器学习 功能(生物学) 图像(数学) 数据挖掘 模式识别(心理学) 进化生物学 生物
作者
Yixin Fang,Xiangquan Zhang,Hui Cao,Jianglong Nie,Zhao Chen,Zhouqiang He
标识
DOI:10.1109/cvidl58838.2023.10166407
摘要

For the intelligent processing of power equipment, its image datasets are often required as data support. However, the collection of power equipment image datasets is limited by the location and environment, and the number of collected datasets is relatively small, which cannot provide enough data for specific applications. This paper proposes to use image generation function of generative adversarial network to generate more images of electrical equipment from existing datasets with a smaller number, thereby increasing the size of electrical equipment datasets. In this paper, the insulator dataset is mainly used for experiment. First, the model building of the generative adversarial network is carried out. This paper uses pytorch to build three network model frameworks of generative adversarial networks, namely self-attention generative adversarial network, boundary equilibrium generative adversarial network and projected generative adversarial network, and selects relevant loss function and training method according to characteristics of each model. Second, models are trained on these three GAN s for the insulator image dataset and analyze experimental results of these three models. Finally, generated results and FID scores of the three models are compared. The FID score of projected generative adversarial network is the lowest, and the quality and diversity of the generated samples are the best, indicating that this model can better learn the characteristics of images and is more suitable for the generation of power equipment datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
自信的高山完成签到,获得积分10
2秒前
3秒前
Q甜完成签到,获得积分10
4秒前
ao完成签到,获得积分10
5秒前
漂亮幻莲发布了新的文献求助10
6秒前
zy发布了新的文献求助10
6秒前
水怪啊完成签到,获得积分10
6秒前
cis2014发布了新的文献求助10
7秒前
7秒前
葡萄爱吃荔枝关注了科研通微信公众号
8秒前
8秒前
豆腐青菜雨完成签到 ,获得积分10
8秒前
我是老大应助Joanna采纳,获得10
9秒前
39完成签到,获得积分0
10秒前
11秒前
调皮的浩天完成签到,获得积分20
11秒前
meihui发布了新的文献求助10
12秒前
李y梅子发布了新的文献求助20
13秒前
大红发布了新的文献求助10
13秒前
啊啊完成签到,获得积分20
15秒前
tutuee完成签到,获得积分10
17秒前
17秒前
beyond完成签到,获得积分10
18秒前
19秒前
ChatGPT发布了新的文献求助10
19秒前
李爱国应助啊啊采纳,获得10
19秒前
zhang完成签到,获得积分10
20秒前
冷傲的夕阳完成签到,获得积分10
21秒前
23秒前
23秒前
小二郎应助科研通管家采纳,获得10
23秒前
ED应助科研通管家采纳,获得10
23秒前
酷波er应助科研通管家采纳,获得10
23秒前
深情安青应助科研通管家采纳,获得10
23秒前
脑洞疼应助科研通管家采纳,获得10
23秒前
wanci应助科研通管家采纳,获得10
24秒前
24秒前
天天快乐应助科研通管家采纳,获得10
24秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993519
求助须知:如何正确求助?哪些是违规求助? 3534225
关于积分的说明 11265055
捐赠科研通 3274061
什么是DOI,文献DOI怎么找? 1806274
邀请新用户注册赠送积分活动 883084
科研通“疑难数据库(出版商)”最低求助积分说明 809710