Insulator Image Dataset Generation based on Generative Adversarial Network

对抗制 生成语法 计算机科学 生成对抗网络 人工智能 机器学习 功能(生物学) 图像(数学) 数据挖掘 模式识别(心理学) 进化生物学 生物
作者
Yixin Fang,Xiangquan Zhang,Hui Cao,Jianglong Nie,Zhao Chen,Zhouqiang He
标识
DOI:10.1109/cvidl58838.2023.10166407
摘要

For the intelligent processing of power equipment, its image datasets are often required as data support. However, the collection of power equipment image datasets is limited by the location and environment, and the number of collected datasets is relatively small, which cannot provide enough data for specific applications. This paper proposes to use image generation function of generative adversarial network to generate more images of electrical equipment from existing datasets with a smaller number, thereby increasing the size of electrical equipment datasets. In this paper, the insulator dataset is mainly used for experiment. First, the model building of the generative adversarial network is carried out. This paper uses pytorch to build three network model frameworks of generative adversarial networks, namely self-attention generative adversarial network, boundary equilibrium generative adversarial network and projected generative adversarial network, and selects relevant loss function and training method according to characteristics of each model. Second, models are trained on these three GAN s for the insulator image dataset and analyze experimental results of these three models. Finally, generated results and FID scores of the three models are compared. The FID score of projected generative adversarial network is the lowest, and the quality and diversity of the generated samples are the best, indicating that this model can better learn the characteristics of images and is more suitable for the generation of power equipment datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助KX采纳,获得10
刚刚
大模型应助艺玲采纳,获得10
1秒前
ZXD完成签到,获得积分10
1秒前
1秒前
丞诺完成签到,获得积分10
1秒前
Ricardo完成签到,获得积分10
2秒前
深情安青应助孔雀翎采纳,获得10
2秒前
3秒前
3秒前
端庄的萝完成签到,获得积分10
3秒前
平淡南霜完成签到,获得积分10
3秒前
李健的粉丝团团长应助ppbb采纳,获得10
3秒前
Mr_Hao发布了新的文献求助20
4秒前
fff发布了新的文献求助10
4秒前
4秒前
CC发布了新的文献求助10
5秒前
eee发布了新的文献求助20
5秒前
HEIKU应助xinxinqi采纳,获得10
6秒前
keroro完成签到,获得积分10
6秒前
研友_VZG7GZ应助宋嬴一采纳,获得10
6秒前
祯果粒完成签到,获得积分10
6秒前
6秒前
王大炮完成签到 ,获得积分10
6秒前
不厌完成签到,获得积分10
7秒前
feifei关注了科研通微信公众号
7秒前
8秒前
香菜完成签到,获得积分20
8秒前
鲸是海蓝色完成签到 ,获得积分10
8秒前
英姑应助xhy采纳,获得10
8秒前
8秒前
8秒前
9秒前
9秒前
10秒前
10秒前
郑开司09发布了新的文献求助10
10秒前
黄紫红蓝发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672