已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An improved lightweight small object detection framework applied to real-time autonomous driving

计算机科学 修剪 块(置换群论) 核(代数) 对象(语法) 卷积(计算机科学) 目标检测 排名(信息检索) 人工智能 深度学习 计算机视觉 模式识别(心理学) 人工神经网络 数学 生物 组合数学 农学 几何学
作者
Bharat Mahaur,K. K. Mishra,Anoj Kumar
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:234: 121036-121036 被引量:34
标识
DOI:10.1016/j.eswa.2023.121036
摘要

Recent deep learning-based object detectors have shown compelling performance for the detection of large objects in autonomous driving applications. However, the detection of small objects like traffic signs and traffic lights is challenging owing to the complex nature of such objects. This article investigates how an existing object detector can be adjusted to address specific tasks and how these modifications can impact the detection of small objects. In particular, we explore and introduce architectural changes to the different components of the popular YOLOv5 model in order to improve its performance in the detection of small objects for autonomous driving. Initially, we propose group depthwise separable convolution as the improved convolution unit to replace standard convolution. We then integrate this unit to create the attention-based dilated CSP block. Lastly, this block is combined with several proposed modules, including the improved SPP, improved PANet, and improved information paths, to form our IS-YOLOv5 model. We also integrate kernel pruning on the network to accelerate the model deployment on vehicle-mounted mobile platform due to limited computing resources and real-time constraints. Specifically, we propose the versatile network pruning (VNP) technique based on Taylor criterion ranking to prune less-essential kernels in the network. We will show that our modifications barely increase the complexity but significantly improve the detection accuracy and speed. Compared to the conventional YOLOv5, the proposed IS-YOLOv5 model increases the mAP by 8.35% on the BDD100K dataset. Besides, our proposed model improves the detection speed in FPS by 3.10% compared to the YOLOv5 model. When using the VNP scheme, FPS is further increased by 52.14%, while the model size and complexity are reduced by 39.29% and 47.81%, with almost no change in mAP. Nevertheless, when compared to state-of-the-art models, IS-YOLOv5+VNP is found to be conducive to the deployment in autonomous driving systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
两个我完成签到 ,获得积分10
1秒前
李爱国应助蓝枫采纳,获得10
3秒前
Crystal完成签到 ,获得积分10
3秒前
精明芷巧完成签到 ,获得积分10
7秒前
Austin完成签到,获得积分10
7秒前
8秒前
10秒前
语冰完成签到,获得积分10
13秒前
大气小天鹅完成签到 ,获得积分10
14秒前
今后应助炙热书白采纳,获得10
14秒前
15秒前
松间蓝雾完成签到,获得积分10
17秒前
19秒前
Luke完成签到,获得积分10
20秒前
追忆应助KDS采纳,获得10
24秒前
平常的芝麻完成签到,获得积分10
24秒前
尾号6533发布了新的文献求助10
24秒前
HughWang完成签到,获得积分10
24秒前
YOLO完成签到 ,获得积分10
24秒前
25秒前
huanger完成签到,获得积分10
25秒前
林夕完成签到 ,获得积分10
28秒前
liulu完成签到 ,获得积分10
29秒前
炙热书白发布了新的文献求助10
31秒前
天天快乐应助xiaomu采纳,获得10
33秒前
超级如风完成签到 ,获得积分10
34秒前
追忆应助松间蓝雾采纳,获得10
37秒前
量子星尘发布了新的文献求助10
38秒前
quhayley应助熬夜的小王采纳,获得10
38秒前
Rondab应助科研通管家采纳,获得10
43秒前
Rondab应助科研通管家采纳,获得10
43秒前
43秒前
43秒前
43秒前
Jasper应助科研通管家采纳,获得10
43秒前
充电宝应助科研通管家采纳,获得10
43秒前
依依发布了新的文献求助10
43秒前
echo完成签到 ,获得积分10
43秒前
冰子完成签到 ,获得积分10
46秒前
47秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956943
求助须知:如何正确求助?哪些是违规求助? 3503011
关于积分的说明 11110935
捐赠科研通 3234007
什么是DOI,文献DOI怎么找? 1787694
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802234