An improved lightweight small object detection framework applied to real-time autonomous driving

计算机科学 修剪 块(置换群论) 核(代数) 对象(语法) 卷积(计算机科学) 目标检测 排名(信息检索) 人工智能 深度学习 计算机视觉 模式识别(心理学) 人工神经网络 数学 生物 组合数学 农学 几何学
作者
Bharat Mahaur,K. K. Mishra,Anoj Kumar
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:234: 121036-121036 被引量:20
标识
DOI:10.1016/j.eswa.2023.121036
摘要

Recent deep learning-based object detectors have shown compelling performance for the detection of large objects in autonomous driving applications. However, the detection of small objects like traffic signs and traffic lights is challenging owing to the complex nature of such objects. This article investigates how an existing object detector can be adjusted to address specific tasks and how these modifications can impact the detection of small objects. In particular, we explore and introduce architectural changes to the different components of the popular YOLOv5 model in order to improve its performance in the detection of small objects for autonomous driving. Initially, we propose group depthwise separable convolution as the improved convolution unit to replace standard convolution. We then integrate this unit to create the attention-based dilated CSP block. Lastly, this block is combined with several proposed modules, including the improved SPP, improved PANet, and improved information paths, to form our IS-YOLOv5 model. We also integrate kernel pruning on the network to accelerate the model deployment on vehicle-mounted mobile platform due to limited computing resources and real-time constraints. Specifically, we propose the versatile network pruning (VNP) technique based on Taylor criterion ranking to prune less-essential kernels in the network. We will show that our modifications barely increase the complexity but significantly improve the detection accuracy and speed. Compared to the conventional YOLOv5, the proposed IS-YOLOv5 model increases the mAP by 8.35% on the BDD100K dataset. Besides, our proposed model improves the detection speed in FPS by 3.10% compared to the YOLOv5 model. When using the VNP scheme, FPS is further increased by 52.14%, while the model size and complexity are reduced by 39.29% and 47.81%, with almost no change in mAP. Nevertheless, when compared to state-of-the-art models, IS-YOLOv5+VNP is found to be conducive to the deployment in autonomous driving systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jersey完成签到 ,获得积分10
刚刚
1秒前
南方姑娘完成签到,获得积分10
2秒前
HEIKU应助科研通管家采纳,获得10
2秒前
HEIKU应助科研通管家采纳,获得10
2秒前
任同学发布了新的文献求助10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
ohh发布了新的文献求助10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
roselau完成签到,获得积分10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
2秒前
HEIKU应助科研通管家采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得30
3秒前
3秒前
聪明夏天完成签到,获得积分10
3秒前
温暖囧完成签到 ,获得积分10
3秒前
陆碌路完成签到,获得积分10
3秒前
可以2完成签到,获得积分10
4秒前
王小红完成签到,获得积分10
5秒前
XS_QI完成签到 ,获得积分10
5秒前
LIGHT完成签到,获得积分10
5秒前
文心雕龙发布了新的文献求助10
5秒前
汪123完成签到,获得积分10
6秒前
上官若男应助ColorCheong2020采纳,获得10
6秒前
紫罗兰花海完成签到 ,获得积分10
6秒前
6秒前
giao完成签到,获得积分10
7秒前
Feng完成签到,获得积分10
7秒前
沉默的若云完成签到,获得积分10
8秒前
xiaoxiao晓发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
靓丽宛亦完成签到,获得积分10
10秒前
FBQZDJG2122完成签到,获得积分10
10秒前
10秒前
枯藤老树昏呀完成签到,获得积分10
11秒前
如意烨霖完成签到,获得积分10
11秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3257305
求助须知:如何正确求助?哪些是违规求助? 2899227
关于积分的说明 8304469
捐赠科研通 2568509
什么是DOI,文献DOI怎么找? 1395145
科研通“疑难数据库(出版商)”最低求助积分说明 652952
邀请新用户注册赠送积分活动 630703