生物炭
砷
化学
环境化学
生物利用度
稻草
土壤污染
磷
环境修复
砷酸盐
木炭
污染
开枪
农学
热解
无机化学
生物
有机化学
生物信息学
生态学
作者
Huimin Zhang,Sajid Mehmood,Mohsin Mahmood,Sehrish Ali,Avelino Núñez‐Delgado,Weidong Li
标识
DOI:10.1016/j.envres.2023.116640
摘要
Multi-metals/metalloids contaminated soil has received extensive attention because of their adverse health effects on the safety of the food chain and environmental health. In order to provide additional insight and aid in mitigating environmental risks, a pot experiment was directed to assess the impacts of biochars derived from rice straw (BC), and modified biochars i-e., hydroxyapatite modified (HAP-BC) and oxidized biochars (Ox-BC) on the redistribution, phytoavailability and bioavailability of phosphorus (P), lead (Pb), and Arsenic (As), as well as their effects on the growth of maize (Zea mays L.) in a Lead (Pb)/Arsenic (As) contaminated soil. The results showed that HAP-BC increased the soil total and available P, compared with raw biochar and control treatment. HAP-BC improved soil properties by elevating soil pH and electric conductivity (EC). The Hedley fractionation scheme revealed that HAP-BC enhanced the labile and moderately labile P species in soil. Both HAP-BC and Ox-BC assisted in the P build-up in plant roots and shoots. The BCR (European Community Bureau of Reference) sequential extraction data for Pb and As in soil showed the pronounced effects of HAP-BC towards the transformation of labile Pb and As forms into more stable species. Compared with control, HAP-BC significantly (P ≤ 0.05) decreased the DTPA-extractable Pb and As by 55% and 28%, respectively, subsequently, resulting in reduced Pb and As plant uptakes. HAP-BC application increased the plant fresh and dry root/shoot biomass by 239%, 72%, 222% and 190%, respectively. The Pb/As immobilization by HAP-BC was mainly driven by precipitation, ion exchange and surface complexation mechanisms in soil. In general, HAP-BC application indicated a great capability to be employed as an effective alternative soil amendment for improving P acquisition in soil, simultaneously immobilizing Pb and As in the soil-plant systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI