Probabilistic Multi-Energy Load Forecasting for Integrated Energy System Based on Bayesian Transformer Network

概率逻辑 计算机科学 贝叶斯概率 水准点(测量) 贝叶斯网络 联合概率分布 概率分布 变压器 先验概率 编码器 动态贝叶斯网络 贝叶斯推理 人工智能 数据挖掘 工程类 数学 电压 操作系统 大地测量学 电气工程 统计 地理
作者
Chen Wang,Ying Wang,Zhetong Ding,Kaifeng Zhang
出处
期刊:IEEE Transactions on Smart Grid [Institute of Electrical and Electronics Engineers]
卷期号:15 (2): 1495-1508 被引量:27
标识
DOI:10.1109/tsg.2023.3296647
摘要

Probabilistic multi-energy load forecasting in an integrated energy system is very complex, because it needs to consider the following three aspects simultaneously: 1) Complex coupling relationship exists between multi-energy loads. 2) The intrinsic distribution of load uncertainties and dynamic changes of the distributions should be captured. 3) The probability distribution containing sufficient information should be generated. To address these issues, this paper proposes a multi-task Bayesian neural network, Bayesian Multiple-Decoder Transformer (BMDeT), which can capture both epistemic and aleatoric uncertainty, and achieve the joint probabilistic forecasting of the multi-energy loads considering their complex coupling relationship and related uncertainties. Firstly, the proposed model adopts the one-encoder multi-decoder framework, which could catch the multi-load coupling information by one Bayesian encoder and perform respective subtasks by multiple Bayesian decoders. Specifically, the Bayesian multi-head attention mechanism is proposed to capture the complex coupling relationship and uncertainties between multi-energy loads by optimizing the distribution of network parameters. Then, a multi-task balance method based on Bayesian theory is proposed to quantify the uncertainties of different tasks by giving trainable weights. Finally, the proposed model has been verified on a real-world load data set, the results show that it has superior performance over other benchmark models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
正摩六堂完成签到,获得积分10
2秒前
4秒前
渐行渐远发布了新的文献求助10
4秒前
元元发布了新的文献求助10
5秒前
热心的市民完成签到,获得积分10
6秒前
chrysophoron完成签到,获得积分10
7秒前
英吉利25发布了新的文献求助10
10秒前
kkk123完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助150
13秒前
马志青完成签到,获得积分10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
天天快乐应助科研通管家采纳,获得10
14秒前
14秒前
浮游应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
Koalas应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
研友_VZG7GZ应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
15秒前
小马甲应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
15秒前
打打应助科研通管家采纳,获得10
15秒前
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
俭朴的玉兰完成签到 ,获得积分10
17秒前
陶醉的谷丝完成签到 ,获得积分10
18秒前
任风完成签到,获得积分10
19秒前
温婉的采蓝完成签到 ,获得积分10
20秒前
科研通AI5应助陆oi采纳,获得10
20秒前
泡泡茶壶o完成签到 ,获得积分10
21秒前
21秒前
龙王爱吃糖完成签到 ,获得积分10
22秒前
苏苏完成签到,获得积分10
23秒前
victhr完成签到,获得积分10
26秒前
NexusExplorer应助西海岸的风采纳,获得10
26秒前
zojoy完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Irregular Migration in Southeast Asia: Contemporary Barriers to Regularization and Healthcare 2000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5056961
求助须知:如何正确求助?哪些是违规求助? 4282417
关于积分的说明 13345601
捐赠科研通 4099349
什么是DOI,文献DOI怎么找? 2244241
邀请新用户注册赠送积分活动 1250276
关于科研通互助平台的介绍 1180760