电解质
阴极
材料科学
化学工程
降级(电信)
相(物质)
化学
电极
物理化学
电气工程
有机化学
工程类
作者
Honglin Yan,Xiaoya Gao,Xiangting Yue,Yuan Ha,Zhimin Li
标识
DOI:10.1016/j.apsusc.2023.157868
摘要
Ni-rich LiNi0.80Co0.15Al0.05 (NCA) cathode material with high energy density always suffers from structural degradation during cycles, resulting in rapid capacity fading and severe voltage decay. In this study, a solid-state electrolyte film of Li1.8Sc0.8Ti1.2(PO4)3 (LSTP) is constructed on the surface of NCA cathode via a chemical route to enhance the cycling stability of NCA cathode. The Ex-situ XRD, EIS, dQ/dV, and SEM analyses show that the structural degradation of NCA derives mainly from the corrosion of electrolyte rather than H2-H3 phase transition, which gives rise to the extremely weak phase transitions of H1-M−H2−H3 after cycles. Besides the isolation role of LSTP film, it is found that Ti4+ ions in LSTP incorporate into the subsurface structure of NCA, which can accelerate the Li+ diffusion, reduce the Li+/Ni2+ disorder, reinforce the crystal structure, and enlarge the inter-slab spacing of NCA. Consequently, the coated NCA-2 %LSTP cathode reveals well structural integrity and evident phase transition behavior, delivering stable cycling performance with a superior capacity retention of 96.8 % at 1.0C after 100 cycles. This study not only deeply analyzes the mechanism of the structural degradation of NCA, but also demonstrates an efficient improving approach through LSTP modification.
科研通智能强力驱动
Strongly Powered by AbleSci AI