Evaluation of a Model to Target High-risk Psychiatric Inpatients for an Intensive Postdischarge Suicide Prevention Intervention

医学 自杀预防 毒物控制 公共卫生 伤害预防 职业安全与健康 病历 健康档案 精神科 医疗急救 急诊医学 医疗保健 经济 护理部 病理 放射科 经济增长
作者
Ronald C. Kessler,Mark S. Bauer,Todd M. Bishop,Robert M. Bossarte,Víctor M. Castro,Olga Demler,Sarah M. Gildea,Joseph L. Goulet,Andrew J. King,Chris J. Kennedy,Sara J. Landes,Howard Liu,Alex Luedtke,Patrick Mair,Brian P. Marx,Matthew K. Nock,Maria Petukhova,Wilfred R. Pigeon,Nancy A. Sampson,Jordan W. Smoller
出处
期刊:JAMA Psychiatry [American Medical Association]
卷期号:80 (3): 230-230 被引量:25
标识
DOI:10.1001/jamapsychiatry.2022.4634
摘要

The months after psychiatric hospital discharge are a time of high risk for suicide. Intensive postdischarge case management, although potentially effective in suicide prevention, is likely to be cost-effective only if targeted at high-risk patients. A previously developed machine learning (ML) model showed that postdischarge suicides can be predicted from electronic health records and geospatial data, but it is unknown if prediction could be improved by adding additional information. To determine whether model prediction could be improved by adding information extracted from clinical notes and public records. Models were trained to predict suicides in the 12 months after Veterans Health Administration (VHA) short-term (less than 365 days) psychiatric hospitalizations between the beginning of 2010 and September 1, 2012 (299 050 hospitalizations, with 916 hospitalizations followed within 12 months by suicides) and tested in the hospitalizations from September 2, 2012, to December 31, 2013 (149 738 hospitalizations, with 393 hospitalizations followed within 12 months by suicides). Validation focused on net benefit across a range of plausible decision thresholds. Predictor importance was assessed with Shapley additive explanations (SHAP) values. Data were analyzed from January to August 2022. Suicides were defined by the National Death Index. Base model predictors included VHA electronic health records and patient residential data. The expanded predictors came from natural language processing (NLP) of clinical notes and a social determinants of health (SDOH) public records database. The model included 448 788 unique hospitalizations. Net benefit over risk horizons between 3 and 12 months was generally highest for the model that included both NLP and SDOH predictors (area under the receiver operating characteristic curve range, 0.747-0.780; area under the precision recall curve relative to the suicide rate range, 3.87-5.75). NLP and SDOH predictors also had the highest predictor class-level SHAP values (proportional SHAP = 64.0% and 49.3%, respectively), although the single highest positive variable-level SHAP value was for a count of medications classified by the US Food and Drug Administration as increasing suicide risk prescribed the year before hospitalization (proportional SHAP = 15.0%). In this study, clinical notes and public records were found to improve ML model prediction of suicide after psychiatric hospitalization. The model had positive net benefit over 3-month to 12-month risk horizons for plausible decision thresholds. Although caution is needed in inferring causality based on predictor importance, several key predictors have potential intervention implications that should be investigated in future studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
免孑发布了新的文献求助10
刚刚
芸苔AA完成签到,获得积分10
刚刚
qwertnjj完成签到,获得积分10
1秒前
1秒前
阿尔曼完成签到 ,获得积分10
1秒前
1秒前
丰知然完成签到,获得积分0
1秒前
坦率的可仁完成签到,获得积分10
1秒前
1秒前
完美世界应助激昂的逊采纳,获得10
2秒前
2秒前
嗨是完成签到,获得积分10
2秒前
万能图书馆应助Fu采纳,获得10
2秒前
2秒前
油菜花完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
wanci应助开朗的念云采纳,获得10
5秒前
5秒前
Leo完成签到,获得积分10
6秒前
7秒前
bkagyin应助命运的X号采纳,获得10
7秒前
7秒前
十一苗发布了新的文献求助10
7秒前
8秒前
CipherSage应助benj采纳,获得10
8秒前
小蘑菇完成签到,获得积分10
9秒前
wch666完成签到,获得积分10
9秒前
科研通AI5应助钰宁采纳,获得30
10秒前
Min发布了新的文献求助10
11秒前
Yolen LI发布了新的文献求助10
12秒前
12秒前
ztll完成签到,获得积分10
12秒前
12秒前
怕黑向卉发布了新的文献求助10
13秒前
14秒前
40873完成签到 ,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
拾野之苹完成签到,获得积分10
16秒前
skf完成签到 ,获得积分10
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3663010
求助须知:如何正确求助?哪些是违规求助? 3223738
关于积分的说明 9753126
捐赠科研通 2933645
什么是DOI,文献DOI怎么找? 1606294
邀请新用户注册赠送积分活动 758404
科研通“疑难数据库(出版商)”最低求助积分说明 734792