Detection of the separated root canal instrument on panoramic radiograph: a comparison of LSTM and CNN deep learning methods

卷积神经网络 人工智能 麦克内马尔试验 深度学习 接收机工作特性 计算机科学 模式识别(心理学) 射线照相术 特征(语言学) 根管 数学 牙科 医学 放射科 统计 机器学习 哲学 语言学
作者
Cansu Büyük,Burcin Arican Alpay,Fusun Er
出处
期刊:Dentomaxillofacial Radiology [British Institute of Radiology]
卷期号:52 (3) 被引量:1
标识
DOI:10.1259/dmfr.20220209
摘要

Objectives: A separated endodontic instrument is one of the challenging complications of root canal treatment. The purpose of this study was to compare two deep learning methods that are convolutional neural network (CNN) and long short-term memory (LSTM) to detect the separated endodontic instruments on dental radiographs. Methods: Panoramic radiographs from the hospital archive were retrospectively evaluated by two dentists. A total of 915 teeth, of which 417 are labeled as “separated instrument” and 498 are labeled as “healthy root canal treatment” were included. A total of six deep learning models, four of which are some varieties of CNN (Raw-CNN, Augmented-CNN, Gabor filtered-CNN, Gabor-filtered-augmented-CNN) and two of which are some varieties of LSTM model (Raw-LSTM, Augmented-LSTM) were trained based on several feature extraction methods with an applied or not applied an augmentation procedure. The diagnostic performances of the models were compared in terms of accuracy, sensitivity, specificity, positive- and negative-predictive value using 10-fold cross-validation. A McNemar’s tests was employed to figure out if there is a statistically significant difference between performances of the models. Receiver operating characteristic (ROC) curves were developed to assess the quality of the performance of the most promising model (Gabor filtered-CNN model) by exploring different cut-off levels in the last decision layer of the model. Results: The Gabor filtered-CNN model showed the highest accuracy (84.37 ± 2.79), sensitivity (81.26 ± 4.79), positive-predictive value (84.16 ± 3.35) and negative-predictive value (84.62 ± 4.56 with a confidence interval of 80.6 ± 0.0076. McNemar’s tests yielded that the performance of the Gabor filtered-CNN model significantly different from both LSTM models (p < 0.01). Conclusions: Both CNN and LSTM models were achieved a high predictive performance on to distinguish separated endodontic instruments in radiographs. The Gabor filtered-CNN model without data augmentation gave the best predictive performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Yddear发布了新的文献求助10
2秒前
小猪猪发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
式微给式微的求助进行了留言
3秒前
白昼画家完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
资新烟完成签到 ,获得积分10
7秒前
雷媛发布了新的文献求助10
8秒前
田様应助研友_8o5V2n采纳,获得10
8秒前
X_ye完成签到,获得积分20
8秒前
JamesPei应助lina采纳,获得10
9秒前
iNk应助小吴采纳,获得20
9秒前
yy发布了新的文献求助10
9秒前
10秒前
10秒前
852应助嘻嘻采纳,获得10
10秒前
辉仔完成签到,获得积分10
11秒前
科目三应助外向的醉易采纳,获得10
13秒前
英俊的铭应助刚睡醒采纳,获得10
15秒前
15秒前
式微发布了新的文献求助10
16秒前
王克凡完成签到,获得积分20
16秒前
16秒前
梦红完成签到,获得积分10
17秒前
18秒前
Legno完成签到,获得积分10
19秒前
爆米花应助Ronnie采纳,获得10
20秒前
lina发布了新的文献求助10
21秒前
无花果应助kyhhh采纳,获得10
22秒前
科研通AI6应助坚强一笑采纳,获得10
22秒前
22秒前
23秒前
23秒前
23秒前
24秒前
孤独半兰完成签到 ,获得积分10
24秒前
量子星尘发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5431693
求助须知:如何正确求助?哪些是违规求助? 4544532
关于积分的说明 14193033
捐赠科研通 4463623
什么是DOI,文献DOI怎么找? 2446815
邀请新用户注册赠送积分活动 1438135
关于科研通互助平台的介绍 1414837