Detection of the separated root canal instrument on panoramic radiograph: a comparison of LSTM and CNN deep learning methods

卷积神经网络 人工智能 麦克内马尔试验 深度学习 接收机工作特性 计算机科学 模式识别(心理学) 射线照相术 特征(语言学) 根管 数学 牙科 医学 放射科 统计 机器学习 哲学 语言学
作者
Cansu Büyük,Burcin Arican Alpay,Fusun Er
出处
期刊:Dentomaxillofacial Radiology [British Institute of Radiology]
卷期号:52 (3) 被引量:1
标识
DOI:10.1259/dmfr.20220209
摘要

Objectives: A separated endodontic instrument is one of the challenging complications of root canal treatment. The purpose of this study was to compare two deep learning methods that are convolutional neural network (CNN) and long short-term memory (LSTM) to detect the separated endodontic instruments on dental radiographs. Methods: Panoramic radiographs from the hospital archive were retrospectively evaluated by two dentists. A total of 915 teeth, of which 417 are labeled as “separated instrument” and 498 are labeled as “healthy root canal treatment” were included. A total of six deep learning models, four of which are some varieties of CNN (Raw-CNN, Augmented-CNN, Gabor filtered-CNN, Gabor-filtered-augmented-CNN) and two of which are some varieties of LSTM model (Raw-LSTM, Augmented-LSTM) were trained based on several feature extraction methods with an applied or not applied an augmentation procedure. The diagnostic performances of the models were compared in terms of accuracy, sensitivity, specificity, positive- and negative-predictive value using 10-fold cross-validation. A McNemar’s tests was employed to figure out if there is a statistically significant difference between performances of the models. Receiver operating characteristic (ROC) curves were developed to assess the quality of the performance of the most promising model (Gabor filtered-CNN model) by exploring different cut-off levels in the last decision layer of the model. Results: The Gabor filtered-CNN model showed the highest accuracy (84.37 ± 2.79), sensitivity (81.26 ± 4.79), positive-predictive value (84.16 ± 3.35) and negative-predictive value (84.62 ± 4.56 with a confidence interval of 80.6 ± 0.0076. McNemar’s tests yielded that the performance of the Gabor filtered-CNN model significantly different from both LSTM models (p < 0.01). Conclusions: Both CNN and LSTM models were achieved a high predictive performance on to distinguish separated endodontic instruments in radiographs. The Gabor filtered-CNN model without data augmentation gave the best predictive performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucien完成签到,获得积分10
刚刚
陈小瑜完成签到,获得积分10
1秒前
Maykl发布了新的文献求助10
1秒前
3秒前
3秒前
Mandy完成签到 ,获得积分10
3秒前
慢慢人发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
爆米花应助liu采纳,获得10
4秒前
Zz发布了新的文献求助10
4秒前
y1j完成签到,获得积分10
5秒前
7秒前
8秒前
9秒前
大个应助Zz采纳,获得10
10秒前
10秒前
123完成签到 ,获得积分10
11秒前
12秒前
遨游的人发布了新的文献求助10
12秒前
禾页完成签到 ,获得积分10
13秒前
14秒前
Yuan发布了新的文献求助10
15秒前
好问题发布了新的文献求助10
15秒前
NexusExplorer应助临江仙采纳,获得10
15秒前
15秒前
Elite完成签到 ,获得积分10
16秒前
万木春发布了新的文献求助10
16秒前
17秒前
慢慢人完成签到,获得积分10
18秒前
LpMvo2发布了新的文献求助10
19秒前
yh完成签到,获得积分10
19秒前
21秒前
苏卿应助luckweb采纳,获得10
24秒前
贝贝完成签到,获得积分0
24秒前
坚定惜梦发布了新的文献求助10
24秒前
Maykl完成签到,获得积分10
25秒前
量子星尘发布了新的文献求助10
26秒前
27秒前
等一个晴天完成签到,获得积分10
27秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419649
求助须知:如何正确求助?哪些是违规求助? 4534895
关于积分的说明 14147178
捐赠科研通 4451527
什么是DOI,文献DOI怎么找? 2441782
邀请新用户注册赠送积分活动 1433376
关于科研通互助平台的介绍 1410617