Detection of the separated root canal instrument on panoramic radiograph: a comparison of LSTM and CNN deep learning methods

卷积神经网络 人工智能 麦克内马尔试验 深度学习 接收机工作特性 计算机科学 模式识别(心理学) 射线照相术 特征(语言学) 根管 数学 牙科 医学 放射科 统计 机器学习 哲学 语言学
作者
Cansu Büyük,Burcin Arican Alpay,Fusun Er
出处
期刊:Dentomaxillofacial Radiology [British Institute of Radiology]
卷期号:52 (3) 被引量:1
标识
DOI:10.1259/dmfr.20220209
摘要

Objectives: A separated endodontic instrument is one of the challenging complications of root canal treatment. The purpose of this study was to compare two deep learning methods that are convolutional neural network (CNN) and long short-term memory (LSTM) to detect the separated endodontic instruments on dental radiographs. Methods: Panoramic radiographs from the hospital archive were retrospectively evaluated by two dentists. A total of 915 teeth, of which 417 are labeled as “separated instrument” and 498 are labeled as “healthy root canal treatment” were included. A total of six deep learning models, four of which are some varieties of CNN (Raw-CNN, Augmented-CNN, Gabor filtered-CNN, Gabor-filtered-augmented-CNN) and two of which are some varieties of LSTM model (Raw-LSTM, Augmented-LSTM) were trained based on several feature extraction methods with an applied or not applied an augmentation procedure. The diagnostic performances of the models were compared in terms of accuracy, sensitivity, specificity, positive- and negative-predictive value using 10-fold cross-validation. A McNemar’s tests was employed to figure out if there is a statistically significant difference between performances of the models. Receiver operating characteristic (ROC) curves were developed to assess the quality of the performance of the most promising model (Gabor filtered-CNN model) by exploring different cut-off levels in the last decision layer of the model. Results: The Gabor filtered-CNN model showed the highest accuracy (84.37 ± 2.79), sensitivity (81.26 ± 4.79), positive-predictive value (84.16 ± 3.35) and negative-predictive value (84.62 ± 4.56 with a confidence interval of 80.6 ± 0.0076. McNemar’s tests yielded that the performance of the Gabor filtered-CNN model significantly different from both LSTM models (p < 0.01). Conclusions: Both CNN and LSTM models were achieved a high predictive performance on to distinguish separated endodontic instruments in radiographs. The Gabor filtered-CNN model without data augmentation gave the best predictive performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小陈发布了新的文献求助10
刚刚
肯德鸭完成签到,获得积分10
刚刚
罗是一完成签到,获得积分10
1秒前
明明应助Syne_采纳,获得10
1秒前
研友_nVNBVn完成签到,获得积分10
1秒前
自信的冬日完成签到,获得积分10
1秒前
夏夏完成签到,获得积分10
1秒前
2秒前
zheweitang完成签到,获得积分10
2秒前
2秒前
彭于晏应助CHEN采纳,获得10
2秒前
柚柚子发布了新的文献求助10
2秒前
邵柯文发布了新的文献求助10
3秒前
cmfort完成签到,获得积分10
4秒前
4秒前
个性的荆完成签到 ,获得积分10
5秒前
思源应助XX采纳,获得10
5秒前
sdhjad完成签到,获得积分10
6秒前
危机的颖完成签到 ,获得积分10
6秒前
嗯呢应助Yana__Chan采纳,获得10
6秒前
7秒前
Joy完成签到,获得积分10
7秒前
xx发布了新的文献求助10
7秒前
susiex发布了新的文献求助10
8秒前
专注的问寒应助oxear采纳,获得50
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
9秒前
LJ完成签到,获得积分10
9秒前
9秒前
优pp完成签到 ,获得积分10
9秒前
tt发布了新的文献求助10
9秒前
魔幻沛菡完成签到 ,获得积分10
9秒前
10秒前
烟花应助qqqq_8采纳,获得10
10秒前
慕青应助fjnm采纳,获得10
10秒前
Sean完成签到,获得积分10
10秒前
Gavin啥也不会完成签到,获得积分10
10秒前
FashionBoy应助wyx采纳,获得10
11秒前
西蜀小吏发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651963
求助须知:如何正确求助?哪些是违规求助? 4786252
关于积分的说明 15057288
捐赠科研通 4810579
什么是DOI,文献DOI怎么找? 2573269
邀请新用户注册赠送积分活动 1529180
关于科研通互助平台的介绍 1488096