Detection of the separated root canal instrument on panoramic radiograph: a comparison of LSTM and CNN deep learning methods

卷积神经网络 人工智能 麦克内马尔试验 深度学习 接收机工作特性 计算机科学 模式识别(心理学) 射线照相术 特征(语言学) 根管 数学 牙科 医学 放射科 统计 机器学习 哲学 语言学
作者
Cansu Büyük,Burcin Arican Alpay,Fusun Er
出处
期刊:Dentomaxillofacial Radiology [British Institute of Radiology]
卷期号:52 (3) 被引量:1
标识
DOI:10.1259/dmfr.20220209
摘要

Objectives: A separated endodontic instrument is one of the challenging complications of root canal treatment. The purpose of this study was to compare two deep learning methods that are convolutional neural network (CNN) and long short-term memory (LSTM) to detect the separated endodontic instruments on dental radiographs. Methods: Panoramic radiographs from the hospital archive were retrospectively evaluated by two dentists. A total of 915 teeth, of which 417 are labeled as “separated instrument” and 498 are labeled as “healthy root canal treatment” were included. A total of six deep learning models, four of which are some varieties of CNN (Raw-CNN, Augmented-CNN, Gabor filtered-CNN, Gabor-filtered-augmented-CNN) and two of which are some varieties of LSTM model (Raw-LSTM, Augmented-LSTM) were trained based on several feature extraction methods with an applied or not applied an augmentation procedure. The diagnostic performances of the models were compared in terms of accuracy, sensitivity, specificity, positive- and negative-predictive value using 10-fold cross-validation. A McNemar’s tests was employed to figure out if there is a statistically significant difference between performances of the models. Receiver operating characteristic (ROC) curves were developed to assess the quality of the performance of the most promising model (Gabor filtered-CNN model) by exploring different cut-off levels in the last decision layer of the model. Results: The Gabor filtered-CNN model showed the highest accuracy (84.37 ± 2.79), sensitivity (81.26 ± 4.79), positive-predictive value (84.16 ± 3.35) and negative-predictive value (84.62 ± 4.56 with a confidence interval of 80.6 ± 0.0076. McNemar’s tests yielded that the performance of the Gabor filtered-CNN model significantly different from both LSTM models (p < 0.01). Conclusions: Both CNN and LSTM models were achieved a high predictive performance on to distinguish separated endodontic instruments in radiographs. The Gabor filtered-CNN model without data augmentation gave the best predictive performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
黄TL发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
1秒前
子车茗应助xiu-er采纳,获得30
1秒前
dongkk完成签到 ,获得积分10
2秒前
iNk应助zhangfuchao采纳,获得20
3秒前
_firework_发布了新的文献求助20
3秒前
5秒前
书白发布了新的文献求助10
5秒前
白踏歌发布了新的文献求助10
5秒前
slowslow完成签到 ,获得积分10
5秒前
狂奔的蜗牛完成签到,获得积分10
5秒前
6秒前
烟花应助後知後孓采纳,获得10
6秒前
wsb76完成签到 ,获得积分10
7秒前
7秒前
Yang应助lycbbgh采纳,获得20
8秒前
开放的灵槐完成签到,获得积分10
8秒前
8秒前
不安毛豆应助Sor采纳,获得10
9秒前
9秒前
丘比特应助请叫我过儿采纳,获得10
9秒前
俭朴依白发布了新的文献求助10
10秒前
10秒前
淡然平蓝完成签到,获得积分10
11秒前
11秒前
凌柏完成签到,获得积分10
12秒前
13秒前
看你个完成签到,获得积分10
13秒前
刘小小123发布了新的文献求助10
13秒前
电催化发布了新的文献求助10
13秒前
NexusExplorer应助汤圆儿采纳,获得10
14秒前
zhousy发布了新的文献求助10
14秒前
龙猪发布了新的文献求助10
15秒前
16秒前
後知後孓完成签到,获得积分10
16秒前
胖胖的小考拉完成签到,获得积分20
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
錢鍾書楊絳親友書札 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3297105
求助须知:如何正确求助?哪些是违规求助? 2932642
关于积分的说明 8458124
捐赠科研通 2605306
什么是DOI,文献DOI怎么找? 1422222
科研通“疑难数据库(出版商)”最低求助积分说明 661339
邀请新用户注册赠送积分活动 644565