Detection of the separated root canal instrument on panoramic radiograph: a comparison of LSTM and CNN deep learning methods

卷积神经网络 人工智能 麦克内马尔试验 深度学习 接收机工作特性 计算机科学 模式识别(心理学) 射线照相术 特征(语言学) 根管 数学 牙科 医学 放射科 统计 机器学习 哲学 语言学
作者
Cansu Büyük,Burcin Arican Alpay,Fusun Er
出处
期刊:Dentomaxillofacial Radiology [British Institute of Radiology]
卷期号:52 (3) 被引量:1
标识
DOI:10.1259/dmfr.20220209
摘要

Objectives: A separated endodontic instrument is one of the challenging complications of root canal treatment. The purpose of this study was to compare two deep learning methods that are convolutional neural network (CNN) and long short-term memory (LSTM) to detect the separated endodontic instruments on dental radiographs. Methods: Panoramic radiographs from the hospital archive were retrospectively evaluated by two dentists. A total of 915 teeth, of which 417 are labeled as “separated instrument” and 498 are labeled as “healthy root canal treatment” were included. A total of six deep learning models, four of which are some varieties of CNN (Raw-CNN, Augmented-CNN, Gabor filtered-CNN, Gabor-filtered-augmented-CNN) and two of which are some varieties of LSTM model (Raw-LSTM, Augmented-LSTM) were trained based on several feature extraction methods with an applied or not applied an augmentation procedure. The diagnostic performances of the models were compared in terms of accuracy, sensitivity, specificity, positive- and negative-predictive value using 10-fold cross-validation. A McNemar’s tests was employed to figure out if there is a statistically significant difference between performances of the models. Receiver operating characteristic (ROC) curves were developed to assess the quality of the performance of the most promising model (Gabor filtered-CNN model) by exploring different cut-off levels in the last decision layer of the model. Results: The Gabor filtered-CNN model showed the highest accuracy (84.37 ± 2.79), sensitivity (81.26 ± 4.79), positive-predictive value (84.16 ± 3.35) and negative-predictive value (84.62 ± 4.56 with a confidence interval of 80.6 ± 0.0076. McNemar’s tests yielded that the performance of the Gabor filtered-CNN model significantly different from both LSTM models (p < 0.01). Conclusions: Both CNN and LSTM models were achieved a high predictive performance on to distinguish separated endodontic instruments in radiographs. The Gabor filtered-CNN model without data augmentation gave the best predictive performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
嘉嘉琦发布了新的文献求助10
4秒前
林莹发布了新的文献求助10
4秒前
sdwdw发布了新的文献求助10
4秒前
yhx发布了新的文献求助10
4秒前
开朗的夜阑完成签到,获得积分10
4秒前
7秒前
嘻嘻完成签到 ,获得积分10
7秒前
金福珠发布了新的文献求助10
8秒前
8秒前
可爱的函函应助luilui0000采纳,获得10
9秒前
天天快乐应助ll采纳,获得10
9秒前
爆米花应助jzzj采纳,获得10
9秒前
11秒前
傅宛白完成签到,获得积分10
12秒前
斯文败类应助peng采纳,获得10
13秒前
傅宛白发布了新的文献求助10
14秒前
李子完成签到,获得积分10
15秒前
无花果应助萌酱采纳,获得10
15秒前
16秒前
18秒前
19秒前
汤锐发布了新的文献求助10
19秒前
me完成签到,获得积分10
19秒前
人人完成签到,获得积分10
19秒前
李健应助林莹采纳,获得10
20秒前
20秒前
20秒前
彭于晏应助洁净思枫采纳,获得30
21秒前
量子星尘发布了新的文献求助10
21秒前
zzz发布了新的文献求助10
21秒前
wj发布了新的文献求助10
22秒前
ccc完成签到 ,获得积分10
22秒前
23秒前
感动尔曼完成签到 ,获得积分10
23秒前
脑洞疼应助都选C采纳,获得10
24秒前
wanci应助流觞采纳,获得30
24秒前
YaoHui发布了新的文献求助10
25秒前
科研通AI6应助伶俐的向彤采纳,获得20
25秒前
月落无痕97完成签到 ,获得积分0
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5626754
求助须知:如何正确求助?哪些是违规求助? 4712621
关于积分的说明 14960174
捐赠科研通 4782571
什么是DOI,文献DOI怎么找? 2554510
邀请新用户注册赠送积分活动 1516153
关于科研通互助平台的介绍 1476438