Detection of the separated root canal instrument on panoramic radiograph: a comparison of LSTM and CNN deep learning methods

卷积神经网络 人工智能 麦克内马尔试验 深度学习 接收机工作特性 计算机科学 模式识别(心理学) 射线照相术 特征(语言学) 根管 数学 牙科 医学 放射科 统计 机器学习 哲学 语言学
作者
Cansu Büyük,Burcin Arican Alpay,Fusun Er
出处
期刊:Dentomaxillofacial Radiology [Oxford University Press]
卷期号:52 (3) 被引量:1
标识
DOI:10.1259/dmfr.20220209
摘要

Objectives: A separated endodontic instrument is one of the challenging complications of root canal treatment. The purpose of this study was to compare two deep learning methods that are convolutional neural network (CNN) and long short-term memory (LSTM) to detect the separated endodontic instruments on dental radiographs. Methods: Panoramic radiographs from the hospital archive were retrospectively evaluated by two dentists. A total of 915 teeth, of which 417 are labeled as “separated instrument” and 498 are labeled as “healthy root canal treatment” were included. A total of six deep learning models, four of which are some varieties of CNN (Raw-CNN, Augmented-CNN, Gabor filtered-CNN, Gabor-filtered-augmented-CNN) and two of which are some varieties of LSTM model (Raw-LSTM, Augmented-LSTM) were trained based on several feature extraction methods with an applied or not applied an augmentation procedure. The diagnostic performances of the models were compared in terms of accuracy, sensitivity, specificity, positive- and negative-predictive value using 10-fold cross-validation. A McNemar’s tests was employed to figure out if there is a statistically significant difference between performances of the models. Receiver operating characteristic (ROC) curves were developed to assess the quality of the performance of the most promising model (Gabor filtered-CNN model) by exploring different cut-off levels in the last decision layer of the model. Results: The Gabor filtered-CNN model showed the highest accuracy (84.37 ± 2.79), sensitivity (81.26 ± 4.79), positive-predictive value (84.16 ± 3.35) and negative-predictive value (84.62 ± 4.56 with a confidence interval of 80.6 ± 0.0076. McNemar’s tests yielded that the performance of the Gabor filtered-CNN model significantly different from both LSTM models (p < 0.01). Conclusions: Both CNN and LSTM models were achieved a high predictive performance on to distinguish separated endodontic instruments in radiographs. The Gabor filtered-CNN model without data augmentation gave the best predictive performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ty1996应助有足量NaCl采纳,获得10
2秒前
多久上课发布了新的文献求助10
2秒前
3秒前
ding应助呆萌安萱采纳,获得10
3秒前
大果完成签到,获得积分20
3秒前
3秒前
小蚊子发布了新的文献求助20
4秒前
adam发布了新的文献求助10
4秒前
asipilin完成签到,获得积分10
4秒前
苏世完成签到,获得积分20
5秒前
ori完成签到,获得积分10
5秒前
6秒前
李健应助奋斗的板栗采纳,获得10
6秒前
happy完成签到 ,获得积分10
7秒前
徐徐完成签到,获得积分10
8秒前
8秒前
8秒前
LIU完成签到 ,获得积分10
9秒前
11秒前
HtheJ发布了新的文献求助10
11秒前
充电宝应助小小果妈采纳,获得10
11秒前
英姑应助yan采纳,获得10
12秒前
研友_LMBa6n发布了新的文献求助30
13秒前
Cxxxxxxv完成签到 ,获得积分10
13秒前
14秒前
华仔应助Doyne采纳,获得10
14秒前
帅的人发布了新的文献求助10
14秒前
15秒前
吴雪完成签到 ,获得积分10
16秒前
cox完成签到 ,获得积分10
17秒前
tracy发布了新的文献求助10
17秒前
超人爱吃菠菜完成签到,获得积分10
17秒前
ne完成签到 ,获得积分10
18秒前
19秒前
fay1987完成签到,获得积分0
19秒前
niesiyu发布了新的文献求助10
20秒前
20秒前
tian完成签到,获得积分10
20秒前
顾矜应助TTT采纳,获得10
20秒前
科研通AI5应助SCI采纳,获得10
22秒前
高分求助中
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4548351
求助须知:如何正确求助?哪些是违规求助? 3979162
关于积分的说明 12320490
捐赠科研通 3647724
什么是DOI,文献DOI怎么找? 2008929
邀请新用户注册赠送积分活动 1044359
科研通“疑难数据库(出版商)”最低求助积分说明 932972