亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Detection of the separated root canal instrument on panoramic radiograph: a comparison of LSTM and CNN deep learning methods

卷积神经网络 人工智能 麦克内马尔试验 深度学习 接收机工作特性 计算机科学 模式识别(心理学) 射线照相术 特征(语言学) 根管 数学 牙科 医学 放射科 统计 机器学习 哲学 语言学
作者
Cansu Büyük,Burcin Arican Alpay,Fusun Er
出处
期刊:Dentomaxillofacial Radiology [Oxford University Press]
卷期号:52 (3) 被引量:1
标识
DOI:10.1259/dmfr.20220209
摘要

Objectives: A separated endodontic instrument is one of the challenging complications of root canal treatment. The purpose of this study was to compare two deep learning methods that are convolutional neural network (CNN) and long short-term memory (LSTM) to detect the separated endodontic instruments on dental radiographs. Methods: Panoramic radiographs from the hospital archive were retrospectively evaluated by two dentists. A total of 915 teeth, of which 417 are labeled as “separated instrument” and 498 are labeled as “healthy root canal treatment” were included. A total of six deep learning models, four of which are some varieties of CNN (Raw-CNN, Augmented-CNN, Gabor filtered-CNN, Gabor-filtered-augmented-CNN) and two of which are some varieties of LSTM model (Raw-LSTM, Augmented-LSTM) were trained based on several feature extraction methods with an applied or not applied an augmentation procedure. The diagnostic performances of the models were compared in terms of accuracy, sensitivity, specificity, positive- and negative-predictive value using 10-fold cross-validation. A McNemar’s tests was employed to figure out if there is a statistically significant difference between performances of the models. Receiver operating characteristic (ROC) curves were developed to assess the quality of the performance of the most promising model (Gabor filtered-CNN model) by exploring different cut-off levels in the last decision layer of the model. Results: The Gabor filtered-CNN model showed the highest accuracy (84.37 ± 2.79), sensitivity (81.26 ± 4.79), positive-predictive value (84.16 ± 3.35) and negative-predictive value (84.62 ± 4.56 with a confidence interval of 80.6 ± 0.0076. McNemar’s tests yielded that the performance of the Gabor filtered-CNN model significantly different from both LSTM models (p < 0.01). Conclusions: Both CNN and LSTM models were achieved a high predictive performance on to distinguish separated endodontic instruments in radiographs. The Gabor filtered-CNN model without data augmentation gave the best predictive performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助彳亍采纳,获得10
7秒前
彩虹儿应助科研通管家采纳,获得10
16秒前
唐泽雪穗应助科研通管家采纳,获得10
16秒前
21秒前
22秒前
黄康发布了新的文献求助10
27秒前
彳亍发布了新的文献求助10
29秒前
唐诗阅完成签到,获得积分10
36秒前
37秒前
任虎发布了新的文献求助10
42秒前
满意的伊发布了新的文献求助10
44秒前
柯语雪完成签到 ,获得积分10
49秒前
54秒前
Cara发布了新的文献求助10
1分钟前
Cara完成签到,获得积分10
1分钟前
1分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
彩虹儿应助科研通管家采纳,获得10
2分钟前
唐泽雪穗应助科研通管家采纳,获得10
2分钟前
唐泽雪穗应助科研通管家采纳,获得10
2分钟前
在水一方应助科研通管家采纳,获得10
2分钟前
在水一方应助胖胖桑采纳,获得10
2分钟前
2分钟前
Llm发布了新的文献求助10
2分钟前
zcg完成签到,获得积分10
2分钟前
2分钟前
zcg发布了新的文献求助10
2分钟前
lmk完成签到 ,获得积分10
3分钟前
3分钟前
东木发布了新的文献求助10
3分钟前
3分钟前
clhoxvpze完成签到 ,获得积分10
3分钟前
3分钟前
胖胖桑发布了新的文献求助10
3分钟前
wangfaqing942完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
5分钟前
ok完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
可见光通信专用集成电路及实时系统 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4880058
求助须知:如何正确求助?哪些是违规求助? 4166844
关于积分的说明 12927242
捐赠科研通 3925543
什么是DOI,文献DOI怎么找? 2154856
邀请新用户注册赠送积分活动 1172896
关于科研通互助平台的介绍 1076977