Detection of the separated root canal instrument on panoramic radiograph: a comparison of LSTM and CNN deep learning methods

卷积神经网络 人工智能 麦克内马尔试验 深度学习 接收机工作特性 计算机科学 模式识别(心理学) 射线照相术 特征(语言学) 根管 数学 牙科 医学 放射科 统计 机器学习 哲学 语言学
作者
Cansu Büyük,Burcin Arican Alpay,Fusun Er
出处
期刊:Dentomaxillofacial Radiology [British Institute of Radiology]
卷期号:52 (3) 被引量:1
标识
DOI:10.1259/dmfr.20220209
摘要

Objectives: A separated endodontic instrument is one of the challenging complications of root canal treatment. The purpose of this study was to compare two deep learning methods that are convolutional neural network (CNN) and long short-term memory (LSTM) to detect the separated endodontic instruments on dental radiographs. Methods: Panoramic radiographs from the hospital archive were retrospectively evaluated by two dentists. A total of 915 teeth, of which 417 are labeled as “separated instrument” and 498 are labeled as “healthy root canal treatment” were included. A total of six deep learning models, four of which are some varieties of CNN (Raw-CNN, Augmented-CNN, Gabor filtered-CNN, Gabor-filtered-augmented-CNN) and two of which are some varieties of LSTM model (Raw-LSTM, Augmented-LSTM) were trained based on several feature extraction methods with an applied or not applied an augmentation procedure. The diagnostic performances of the models were compared in terms of accuracy, sensitivity, specificity, positive- and negative-predictive value using 10-fold cross-validation. A McNemar’s tests was employed to figure out if there is a statistically significant difference between performances of the models. Receiver operating characteristic (ROC) curves were developed to assess the quality of the performance of the most promising model (Gabor filtered-CNN model) by exploring different cut-off levels in the last decision layer of the model. Results: The Gabor filtered-CNN model showed the highest accuracy (84.37 ± 2.79), sensitivity (81.26 ± 4.79), positive-predictive value (84.16 ± 3.35) and negative-predictive value (84.62 ± 4.56 with a confidence interval of 80.6 ± 0.0076. McNemar’s tests yielded that the performance of the Gabor filtered-CNN model significantly different from both LSTM models (p < 0.01). Conclusions: Both CNN and LSTM models were achieved a high predictive performance on to distinguish separated endodontic instruments in radiographs. The Gabor filtered-CNN model without data augmentation gave the best predictive performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助橙橙采纳,获得30
刚刚
Hepatology发布了新的文献求助10
刚刚
甜美幻露完成签到,获得积分10
刚刚
打打应助小葡萄采纳,获得20
1秒前
1秒前
linyudie发布了新的文献求助30
2秒前
2秒前
曾阿牛发布了新的文献求助10
4秒前
4秒前
甜美幻露发布了新的文献求助10
4秒前
5秒前
5秒前
天涯发布了新的文献求助10
5秒前
5秒前
5秒前
Xiebro完成签到 ,获得积分10
6秒前
小可不怕困难完成签到,获得积分10
6秒前
zhoushuhui完成签到 ,获得积分10
7秒前
潇潇发布了新的文献求助10
8秒前
张文静发布了新的文献求助10
8秒前
8秒前
悦耳青梦发布了新的文献求助10
8秒前
忧郁映之发布了新的文献求助10
9秒前
9秒前
Hepatology完成签到,获得积分10
9秒前
Tysonqu发布了新的文献求助10
10秒前
10秒前
xlh发布了新的文献求助10
10秒前
张子翀完成签到 ,获得积分10
10秒前
斯文败类应助欲扬先抑采纳,获得10
10秒前
wwww发布了新的文献求助10
12秒前
shiqi关注了科研通微信公众号
12秒前
12秒前
香蕉觅云应助轻松的语海采纳,获得30
13秒前
量子星尘发布了新的文献求助10
13秒前
开朗的宛丝完成签到 ,获得积分10
13秒前
房房不慌完成签到 ,获得积分10
13秒前
13秒前
14秒前
daisy发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601468
求助须知:如何正确求助?哪些是违规求助? 4686975
关于积分的说明 14846893
捐赠科研通 4681115
什么是DOI,文献DOI怎么找? 2539378
邀请新用户注册赠送积分活动 1506298
关于科研通互助平台的介绍 1471297