亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Detection of the separated root canal instrument on panoramic radiograph: a comparison of LSTM and CNN deep learning methods

卷积神经网络 人工智能 麦克内马尔试验 深度学习 接收机工作特性 计算机科学 模式识别(心理学) 射线照相术 特征(语言学) 根管 数学 牙科 医学 放射科 统计 机器学习 哲学 语言学
作者
Cansu Büyük,Burcin Arican Alpay,Fusun Er
出处
期刊:Dentomaxillofacial Radiology [British Institute of Radiology]
卷期号:52 (3) 被引量:1
标识
DOI:10.1259/dmfr.20220209
摘要

Objectives: A separated endodontic instrument is one of the challenging complications of root canal treatment. The purpose of this study was to compare two deep learning methods that are convolutional neural network (CNN) and long short-term memory (LSTM) to detect the separated endodontic instruments on dental radiographs. Methods: Panoramic radiographs from the hospital archive were retrospectively evaluated by two dentists. A total of 915 teeth, of which 417 are labeled as “separated instrument” and 498 are labeled as “healthy root canal treatment” were included. A total of six deep learning models, four of which are some varieties of CNN (Raw-CNN, Augmented-CNN, Gabor filtered-CNN, Gabor-filtered-augmented-CNN) and two of which are some varieties of LSTM model (Raw-LSTM, Augmented-LSTM) were trained based on several feature extraction methods with an applied or not applied an augmentation procedure. The diagnostic performances of the models were compared in terms of accuracy, sensitivity, specificity, positive- and negative-predictive value using 10-fold cross-validation. A McNemar’s tests was employed to figure out if there is a statistically significant difference between performances of the models. Receiver operating characteristic (ROC) curves were developed to assess the quality of the performance of the most promising model (Gabor filtered-CNN model) by exploring different cut-off levels in the last decision layer of the model. Results: The Gabor filtered-CNN model showed the highest accuracy (84.37 ± 2.79), sensitivity (81.26 ± 4.79), positive-predictive value (84.16 ± 3.35) and negative-predictive value (84.62 ± 4.56 with a confidence interval of 80.6 ± 0.0076. McNemar’s tests yielded that the performance of the Gabor filtered-CNN model significantly different from both LSTM models (p < 0.01). Conclusions: Both CNN and LSTM models were achieved a high predictive performance on to distinguish separated endodontic instruments in radiographs. The Gabor filtered-CNN model without data augmentation gave the best predictive performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ma121完成签到,获得积分10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
14秒前
48秒前
刺1656发布了新的文献求助10
54秒前
54秒前
jiangmi完成签到,获得积分10
1分钟前
Sene完成签到,获得积分10
1分钟前
andrele应助科研通管家采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
感动初蓝完成签到 ,获得积分10
2分钟前
橘橘橘子皮完成签到 ,获得积分10
2分钟前
2分钟前
蒙恩Maria发布了新的文献求助10
2分钟前
3分钟前
蒙恩Maria完成签到,获得积分10
3分钟前
Pattis完成签到 ,获得积分10
3分钟前
鲸鱼完成签到 ,获得积分10
3分钟前
英俊的铭应助科研通管家采纳,获得10
4分钟前
我是老大应助科研通管家采纳,获得10
4分钟前
bkagyin应助科研通管家采纳,获得10
4分钟前
moaner完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
优秀的甜菜完成签到,获得积分10
5分钟前
zznzn发布了新的文献求助10
5分钟前
Hello应助zznzn采纳,获得10
5分钟前
橘笙发布了新的文献求助10
5分钟前
Ricardo完成签到 ,获得积分10
5分钟前
5分钟前
橘笙完成签到,获得积分10
5分钟前
量子星尘发布了新的文献求助10
6分钟前
andrele应助科研通管家采纳,获得10
6分钟前
SciGPT应助科研通管家采纳,获得10
6分钟前
迷路的曼梅完成签到,获得积分10
6分钟前
852应助留白采纳,获得10
6分钟前
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Exosomes Pipeline Insight, 2025 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671189
求助须知:如何正确求助?哪些是违规求助? 4912050
关于积分的说明 15134209
捐赠科研通 4829983
什么是DOI,文献DOI怎么找? 2586558
邀请新用户注册赠送积分活动 1540225
关于科研通互助平台的介绍 1498423