光热治疗
材料科学
荧光
荧光寿命成像显微镜
纳米技术
合理设计
近红外光谱
生物医学中的光声成像
分子工程
纳米颗粒
光电子学
光学
物理
作者
Xiaoyun Ran,Ping Chen,Yan‐Zhao Liu,Lei Shi,Xue Chen,Gui‐Bin Bian,Hong Zhang,Lina Zhang,Kun Li,Xiao‐Qi Yu
标识
DOI:10.1002/adma.202210179
摘要
Phototheranostics have emerged and flourished as a promising pattern for cancer theranostics owing to their precise photoinduced diagnosis and therapeutic to meet the demands of precision medicine. The diagnosis information and therapeutic effect are directly determined by the fluorescence imaging ability and photothermal conversion efficiency (PCE) of phototheranostic agents. Hence, how to balance the competitive radiative and nonradiative processes of phototheranostic agents is the key factor to evaluate the phototheranostic effect. Herein, molecules named ICRs with high photostaibility are rationally designed, exhibiting fluorescence emission in the second near-infrared window (NIR-II, 1000-1700 nm) and high PCE, which are related to the strong donor-acceptor (D-A) interaction and high reorganization energy Noteworthily, ICR-Qu with stronger D-A interaction and a large-sized conjugated unit encapsulated in nanoparticles exhibits high PCE (81.1%). In addition, ICR-QuNPs are used for fluorescence imaging (FLI), photoacoustic imaging (PAI), and photothermal imaging (PTI) to guide deep-tissue photonic hyperthermia, achieving precise removal and inhibition of breast cancer. Furthermore, combined with α-PD-1, ICR-QuNPs show huge potential to be a facile and efficient tool for photo-immunotherapy. More importantly, this study not only reports an "all-in-one" polymethine-based phototheranostic agent, but also sheds light on the exploration of versatile organic molecules for future practical applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI