Explicit and size-adaptive PSO-based feature selection for classification

计算机科学 粒子群优化 代表(政治) 特征选择 水准点(测量) 人工智能 集合(抽象数据类型) 特征(语言学) 模式识别(心理学) 选择(遗传算法) 算法 哲学 政治 语言学 政治学 程序设计语言 法学 地理 大地测量学
作者
Litao Qu,Weibin He,Jianfei Li,Hua Zhang,Cheng Yang,Bo Xie
出处
期刊:Swarm and evolutionary computation [Elsevier BV]
卷期号:77: 101249-101249 被引量:29
标识
DOI:10.1016/j.swevo.2023.101249
摘要

Feature selection (FS) aims to remove the irrelevant and redundant features to improve the classification accuracy of the algorithm, which is regarded as an NP-hard problem. Recently, particle swarm optimization (PSO) has shown promise in FS problems, but most previous PSO-based FS methods use implicit representation, whose particle size is equal to the number of original features. Such particle representation not only consumes a lot of memory and computational cost but also leads to a large search space when applied to high-dimensional data. In this paper, we propose a novel representation scheme called explicit representation (i.e. particles are directly represented by the corresponding selected feature subset) and redefine the particle update strategy for the new representation. Moreover, we adopt a feature grouping strategy based on feature importance and divide the original feature set into multiple groups. Finally, a size-adaptive expansion strategy is proposed, in which the swarm automatically determines the next feature group to increase the particle size. The proposed algorithm, called ESAPSO, is able to effectively reduce the particle size as well as the computational cost and the memory occupation. We validate the performance of the proposed ESAPSO with several state-of-the-art algorithms on ten benchmark datasets. Experimental results show that the proposed ESAPSO is usually achieved by better classification performance as well as feature subsets with similar or smaller sizes. This study provides valuable and novel insight into the particle representation of the PSO-based feature selection problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zycdx3906完成签到,获得积分10
1秒前
闹心应助小小绿采纳,获得50
2秒前
尧九完成签到,获得积分10
2秒前
123完成签到 ,获得积分10
2秒前
3秒前
zhouleiwang完成签到,获得积分10
4秒前
摘星012发布了新的文献求助20
4秒前
嘿嘿完成签到,获得积分10
7秒前
yr完成签到 ,获得积分10
8秒前
8秒前
王道远完成签到,获得积分10
8秒前
Jasper应助zhouleiwang采纳,获得10
8秒前
123完成签到,获得积分10
9秒前
虎妞完成签到 ,获得积分10
9秒前
积极晓绿完成签到,获得积分10
9秒前
EaRnn发布了新的文献求助10
10秒前
现代的卿完成签到 ,获得积分10
10秒前
拉长的服饰完成签到,获得积分10
11秒前
香菜大王完成签到 ,获得积分10
11秒前
11秒前
愉快静曼发布了新的文献求助10
11秒前
奋斗人雄完成签到,获得积分10
13秒前
小v完成签到 ,获得积分10
13秒前
Gigi完成签到,获得积分10
14秒前
ssssssssci完成签到,获得积分10
14秒前
Owen应助大气灵枫采纳,获得10
15秒前
独特乘风完成签到,获得积分10
18秒前
含糊的代丝完成签到 ,获得积分10
21秒前
朴素的紫安完成签到 ,获得积分10
22秒前
yyj完成签到,获得积分10
23秒前
24秒前
24秒前
量子星尘发布了新的文献求助10
24秒前
君临完成签到,获得积分10
24秒前
林早上完成签到,获得积分20
24秒前
xiu完成签到 ,获得积分10
25秒前
栗爷完成签到,获得积分0
25秒前
深年完成签到,获得积分10
26秒前
求知若渴完成签到,获得积分0
26秒前
所所应助科研通管家采纳,获得10
26秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038388
求助须知:如何正确求助?哪些是违规求助? 3576106
关于积分的说明 11374447
捐赠科研通 3305798
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029