Explicit and size-adaptive PSO-based feature selection for classification

计算机科学 粒子群优化 代表(政治) 特征选择 水准点(测量) 人工智能 集合(抽象数据类型) 特征(语言学) 模式识别(心理学) 选择(遗传算法) 算法 哲学 政治 语言学 政治学 程序设计语言 法学 地理 大地测量学
作者
Litao Qu,Weibin He,Jianfei Li,Hua Zhang,Cheng Yang,Bo Xie
出处
期刊:Swarm and evolutionary computation [Elsevier]
卷期号:77: 101249-101249 被引量:29
标识
DOI:10.1016/j.swevo.2023.101249
摘要

Feature selection (FS) aims to remove the irrelevant and redundant features to improve the classification accuracy of the algorithm, which is regarded as an NP-hard problem. Recently, particle swarm optimization (PSO) has shown promise in FS problems, but most previous PSO-based FS methods use implicit representation, whose particle size is equal to the number of original features. Such particle representation not only consumes a lot of memory and computational cost but also leads to a large search space when applied to high-dimensional data. In this paper, we propose a novel representation scheme called explicit representation (i.e. particles are directly represented by the corresponding selected feature subset) and redefine the particle update strategy for the new representation. Moreover, we adopt a feature grouping strategy based on feature importance and divide the original feature set into multiple groups. Finally, a size-adaptive expansion strategy is proposed, in which the swarm automatically determines the next feature group to increase the particle size. The proposed algorithm, called ESAPSO, is able to effectively reduce the particle size as well as the computational cost and the memory occupation. We validate the performance of the proposed ESAPSO with several state-of-the-art algorithms on ten benchmark datasets. Experimental results show that the proposed ESAPSO is usually achieved by better classification performance as well as feature subsets with similar or smaller sizes. This study provides valuable and novel insight into the particle representation of the PSO-based feature selection problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桃子完成签到,获得积分10
1秒前
源晓现发布了新的文献求助10
1秒前
周周发布了新的文献求助10
3秒前
3秒前
羊羊羊发布了新的文献求助10
3秒前
跳跃的访琴完成签到,获得积分10
4秒前
花开富贵完成签到 ,获得积分10
6秒前
陈pc发布了新的文献求助10
6秒前
8秒前
谭yuanjun发布了新的文献求助30
11秒前
华仔应助羊羊羊采纳,获得10
12秒前
桐桐应助淡淡的小蚂蚁采纳,获得10
12秒前
cocolu应助海不扬波采纳,获得10
12秒前
12秒前
8R60d8应助糕手糕手糕糕手采纳,获得10
12秒前
梁世秀发布了新的文献求助10
13秒前
13秒前
可爱的函函应助Leif采纳,获得10
15秒前
16秒前
酷波er应助和颂采纳,获得10
17秒前
小二郎应助碧蓝板栗采纳,获得20
17秒前
19秒前
20秒前
22秒前
23秒前
25秒前
cocolu应助海不扬波采纳,获得10
27秒前
cocolu应助海不扬波采纳,获得10
27秒前
yyxx完成签到,获得积分10
28秒前
不配.应助传统的鹏涛采纳,获得10
29秒前
30秒前
陈pc完成签到,获得积分10
30秒前
梁世秀完成签到 ,获得积分10
31秒前
w新新新发布了新的文献求助10
32秒前
32秒前
34秒前
龙骑士25发布了新的文献求助10
36秒前
一拳一个小欧阳完成签到 ,获得积分10
36秒前
36秒前
arya关注了科研通微信公众号
37秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330222
求助须知:如何正确求助?哪些是违规求助? 2959810
关于积分的说明 8597138
捐赠科研通 2638270
什么是DOI,文献DOI怎么找? 1444230
科研通“疑难数据库(出版商)”最低求助积分说明 669074
邀请新用户注册赠送积分活动 656624