Explicit and size-adaptive PSO-based feature selection for classification

计算机科学 粒子群优化 代表(政治) 特征选择 水准点(测量) 人工智能 集合(抽象数据类型) 特征(语言学) 模式识别(心理学) 选择(遗传算法) 算法 哲学 政治 语言学 政治学 程序设计语言 法学 地理 大地测量学
作者
Litao Qu,Weibin He,Jianfei Li,Hua Zhang,Cheng Yang,Bo Xie
出处
期刊:Swarm and evolutionary computation [Elsevier]
卷期号:77: 101249-101249 被引量:29
标识
DOI:10.1016/j.swevo.2023.101249
摘要

Feature selection (FS) aims to remove the irrelevant and redundant features to improve the classification accuracy of the algorithm, which is regarded as an NP-hard problem. Recently, particle swarm optimization (PSO) has shown promise in FS problems, but most previous PSO-based FS methods use implicit representation, whose particle size is equal to the number of original features. Such particle representation not only consumes a lot of memory and computational cost but also leads to a large search space when applied to high-dimensional data. In this paper, we propose a novel representation scheme called explicit representation (i.e. particles are directly represented by the corresponding selected feature subset) and redefine the particle update strategy for the new representation. Moreover, we adopt a feature grouping strategy based on feature importance and divide the original feature set into multiple groups. Finally, a size-adaptive expansion strategy is proposed, in which the swarm automatically determines the next feature group to increase the particle size. The proposed algorithm, called ESAPSO, is able to effectively reduce the particle size as well as the computational cost and the memory occupation. We validate the performance of the proposed ESAPSO with several state-of-the-art algorithms on ten benchmark datasets. Experimental results show that the proposed ESAPSO is usually achieved by better classification performance as well as feature subsets with similar or smaller sizes. This study provides valuable and novel insight into the particle representation of the PSO-based feature selection problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rainielove0215完成签到,获得积分0
刚刚
zz完成签到,获得积分10
1秒前
1秒前
kyle完成签到,获得积分10
3秒前
感性的凉面完成签到,获得积分20
3秒前
3秒前
请叫我风吹麦浪应助末岛采纳,获得10
4秒前
Aprial发布了新的文献求助30
4秒前
dd发布了新的文献求助10
4秒前
传奇3应助科研小菜鸟采纳,获得10
4秒前
在水一方应助惠惠采纳,获得10
5秒前
6秒前
冷艳贵公子王少完成签到 ,获得积分10
6秒前
KatzeBaliey完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
zz发布了新的文献求助10
7秒前
7秒前
Twikky发布了新的文献求助10
8秒前
8秒前
小马甲应助芒果采纳,获得10
9秒前
9秒前
心想事成完成签到,获得积分10
11秒前
隐形曼青应助噔噔噔噔采纳,获得10
11秒前
wei发布了新的文献求助10
11秒前
Nature完成签到,获得积分10
11秒前
樱桃苏打水完成签到,获得积分10
12秒前
zhui发布了新的文献求助10
12秒前
金色热浪发布了新的文献求助10
12秒前
pinging应助讲你ing采纳,获得10
14秒前
小九完成签到 ,获得积分10
15秒前
华仔应助科研通管家采纳,获得10
16秒前
英俊的铭应助科研通管家采纳,获得10
16秒前
SciGPT应助科研通管家采纳,获得10
16秒前
ivy应助科研通管家采纳,获得10
17秒前
pluto应助科研通管家采纳,获得10
17秒前
喵酱完成签到,获得积分10
17秒前
17秒前
搜集达人应助科研通管家采纳,获得10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794