Explicit and size-adaptive PSO-based feature selection for classification

计算机科学 粒子群优化 代表(政治) 特征选择 水准点(测量) 人工智能 集合(抽象数据类型) 特征(语言学) 模式识别(心理学) 选择(遗传算法) 算法 哲学 政治 语言学 政治学 程序设计语言 法学 地理 大地测量学
作者
Litao Qu,Weibin He,Jianfei Li,Hua Zhang,Cheng Yang,Bo Xie
出处
期刊:Swarm and evolutionary computation [Elsevier BV]
卷期号:77: 101249-101249 被引量:29
标识
DOI:10.1016/j.swevo.2023.101249
摘要

Feature selection (FS) aims to remove the irrelevant and redundant features to improve the classification accuracy of the algorithm, which is regarded as an NP-hard problem. Recently, particle swarm optimization (PSO) has shown promise in FS problems, but most previous PSO-based FS methods use implicit representation, whose particle size is equal to the number of original features. Such particle representation not only consumes a lot of memory and computational cost but also leads to a large search space when applied to high-dimensional data. In this paper, we propose a novel representation scheme called explicit representation (i.e. particles are directly represented by the corresponding selected feature subset) and redefine the particle update strategy for the new representation. Moreover, we adopt a feature grouping strategy based on feature importance and divide the original feature set into multiple groups. Finally, a size-adaptive expansion strategy is proposed, in which the swarm automatically determines the next feature group to increase the particle size. The proposed algorithm, called ESAPSO, is able to effectively reduce the particle size as well as the computational cost and the memory occupation. We validate the performance of the proposed ESAPSO with several state-of-the-art algorithms on ten benchmark datasets. Experimental results show that the proposed ESAPSO is usually achieved by better classification performance as well as feature subsets with similar or smaller sizes. This study provides valuable and novel insight into the particle representation of the PSO-based feature selection problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
NexusExplorer应助大蒜头采纳,获得10
1秒前
小马甲应助梦溪采纳,获得10
2秒前
3秒前
难过千易发布了新的文献求助10
3秒前
3秒前
尊敬飞鸟完成签到 ,获得积分10
4秒前
一支布洛芬完成签到,获得积分20
4秒前
5秒前
Phoenix Hu发布了新的文献求助10
6秒前
6秒前
长乐完成签到,获得积分10
6秒前
7秒前
明矾发布了新的文献求助10
7秒前
9秒前
9秒前
9秒前
lll完成签到,获得积分10
10秒前
10秒前
11秒前
整齐的忆彤完成签到,获得积分10
12秒前
伊斯坦布尔的鱼应助叁肆采纳,获得10
14秒前
akjsi发布了新的文献求助10
14秒前
毛毛发布了新的文献求助10
14秒前
15秒前
15秒前
顺心的笑翠完成签到 ,获得积分10
16秒前
16秒前
科研通AI2S应助zy采纳,获得10
17秒前
思源应助晚来天欲雪采纳,获得10
17秒前
18秒前
思源应助酷酷的水儿采纳,获得10
19秒前
桂桂发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
19秒前
20秒前
乐乐应助坦率的大神采纳,获得10
25秒前
drtianyunhong完成签到,获得积分10
26秒前
可爱的函函应助毛毛采纳,获得10
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976177
求助须知:如何正确求助?哪些是违规求助? 3520366
关于积分的说明 11202970
捐赠科研通 3256899
什么是DOI,文献DOI怎么找? 1798535
邀请新用户注册赠送积分活动 877725
科研通“疑难数据库(出版商)”最低求助积分说明 806516