产品(数学)
价值(数学)
营销
业务
产品类别
计算机科学
数学
几何学
机器学习
作者
Xiang Wan,Anuj Kumar,Xitong Li
出处
期刊:Management Science
[Institute for Operations Research and the Management Sciences]
日期:2023-10-17
被引量:7
标识
DOI:10.1287/mnsc.2023.4951
摘要
Product recommendations can benefit consumers’ online product search via multiple underlying mechanisms, such as showing products that offer them high value, facilitating navigation on the website, or exposing more product information. However, it is unclear ex ante which is the primary underlying mechanism that drives the benefits of product recommendations to consumers. We conducted a randomized field experiment to estimate the benefits of an item-based collaborative filtering (CF) recommendation system to consumers. We collect unique data on the affinity scores computed by an item-based CF algorithm to develop measures of a product’s net value and horizontal (taste) fit for consumers. Our results indicate that product recommendations help consumers search for higher-value products that are lower priced, fit their tastes better, or both. Besides that, we find that the ability to find higher-value products (rather than easy navigation or exposure to more product information) is the primary driver for consumers’ higher purchase probabilities under recommendations. We further find a higher benefit of recommendations in product categories with higher price dispersion and heterogeneity in consumers’ tastes, providing additional evidence for the lower price and better horizontal fit mechanisms. Finally, we find that when made available, consumers substitute their usage of other search tools on the website with product recommendations. Our findings have important implications for online retailers, policymakers, regulators, and item-based CF recommendation system design. This paper was accepted by D. J. Wu, information systems. Funding: This work was supported by the Public Utility Research Center of the University of Florida, the Hi! PARIS Fellowship, the HEC Foundation, and the Leavey School of Business at Santa Clara University [Grant 102720]. Supplemental Material: Data and the online appendix are available at https://doi.org/10.1287/mnsc.2023.4951 .
科研通智能强力驱动
Strongly Powered by AbleSci AI