Uncertainties Prevailing in Construction Bid Documents and Their Impact on Project Pricing through the Analysis of Prebid Requests for Information

投标 计算机科学 风险分析(工程) 投标价格 运筹学 完整信息 项目管理 业务 经济 财务 工程类 营销 系统工程 微观经济学
作者
Rabin Shrestha,Taewoo Ko,JeeHee Lee
出处
期刊:Journal of Management in Engineering [American Society of Civil Engineers]
卷期号:39 (6) 被引量:3
标识
DOI:10.1061/jmenea.meeng-5475
摘要

Construction bid documents may contain uncertain or incomplete information that can affect project pricing as well as project performance, if not addressed prior to bidding. To resolve the uncertainties and clarify project requirements, the risk and uncertainties prevailing in the document should be identified at an early stage of the project life cycle. In this study, pre-bid request for information (RFI) is utilized as a key clue to quantify project ambiguities and uncertainties of a bid document, as pre-bid RFI is generated by bidders when any ambiguous or incomplete information is encountered in the bid document. Despite the significance of pre-bid RFI in quantifying project uncertainty, studies considering pre-bid RFI to identify project uncertainty are limited. Driven by document-based analysis, this study aims to investigate what uncertainties are frequently encountered in bid documents and how they affect project pricing. To achieve the research goal, this study will (1) identify the prevailing risks/uncertainties in the bid document; (2) determine the most common risks/uncertainties and their impacts on bid price; and (3) verify the significance of pre-bid RFIs in bid uncertainty prediction models. To achieve these objectives, public project data from US state Departments of Transportation (DOTs) were collected and used for frequency analysis, correlation testing, and machine learning-based prediction models. The results of uncertainty prediction models showed that uncertainties driven by pre-bid RFI analysis can improve the project risk prediction up to 15%, verifying the significance of RFIs in the bid price prediction model. This study will contribute to the construction management body of knowledge by clarifying the likelihood of errors and uncertainties that should be checked before bidding, thereby proactively preventing future design changes, claims, and dispute risks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈浩完成签到,获得积分10
1秒前
1秒前
段翠发布了新的文献求助10
1秒前
JamesPei应助笑笑要学习采纳,获得10
1秒前
1秒前
段段砖应助kery采纳,获得10
2秒前
3秒前
4秒前
4秒前
5秒前
魏笑白发布了新的文献求助10
6秒前
6秒前
轩然发布了新的文献求助10
6秒前
7秒前
7秒前
whh123完成签到 ,获得积分10
8秒前
张紫嫣完成签到,获得积分20
9秒前
晨凌夜影完成签到,获得积分10
10秒前
AFF完成签到,获得积分10
10秒前
11秒前
科研通AI5应助MOTOMORI采纳,获得10
11秒前
科研通AI5应助无聊的念蕾采纳,获得10
11秒前
hihi发布了新的文献求助10
11秒前
12秒前
王大可完成签到,获得积分10
12秒前
12秒前
大模型应助凉逗听采纳,获得10
13秒前
huang完成签到,获得积分10
13秒前
轩然完成签到,获得积分10
14秒前
14秒前
gift发布了新的文献求助10
15秒前
动听静槐发布了新的文献求助10
16秒前
16秒前
16秒前
英俊的铭应助yk采纳,获得10
17秒前
苗条馒头完成签到,获得积分10
17秒前
科研小白发布了新的文献求助10
17秒前
18秒前
18秒前
20秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734798
求助须知:如何正确求助?哪些是违规求助? 3278733
关于积分的说明 10011078
捐赠科研通 2995408
什么是DOI,文献DOI怎么找? 1643417
邀请新用户注册赠送积分活动 781158
科研通“疑难数据库(出版商)”最低求助积分说明 749285