Electrochromic Sensor Augmented with Machine Learning for Enzyme-Free Analysis of Antioxidants

电致变色 普鲁士蓝 计算机科学 指纹(计算) 纳米技术 聚苯胺 材料科学 抗氧化剂 组合化学 化学 人工智能 电化学 生物化学 复合材料 物理化学 聚合物 聚合 电极
作者
Saba Ranjbar,Amir Hesam Salavati,Negar Ashari Astani,Naimeh Naseri,Navid Davar,Mohammad Reza Ejtehadi
出处
期刊:ACS Sensors [American Chemical Society]
卷期号:8 (11): 4281-4292 被引量:17
标识
DOI:10.1021/acssensors.3c01637
摘要

Our study presents an electrochromic sensor that operates without the need for enzymes or multiple oxidant reagents. This sensor is augmented with machine learning algorithms, enabling the identification, classification, and prediction of six different antioxidants with high accuracy. We utilized polyaniline (PANI), Prussian blue (PB), and copper-Prussian blue analogues (Cu-PBA) at their respective oxidation states as electrochromic materials (ECMs). By designing three readout channels with these materials, we were able to achieve visual detection of antioxidants without relying on traditional "lock and key" specific interactions. Our sensing approach is based on the direct electrochemical reactions between oxidized electrochromic materials (ECMsox) as electron acceptors and various antioxidants, which act as electron donors. This interaction generates unique fingerprint patterns by switching the ECMsox to reduced electrochromic materials (ECMsred), causing their colors to change. Through the application of density functional theory (DFT), we demonstrated the molecular-level basis for the distinct multicolor patterns. Additionally, machine learning algorithms were employed to correlate the optical patterns with RGB data, enabling complex data analysis and the prediction of unknown samples. To demonstrate the practical applications of our design, we successfully used the EC sensor to diagnose antioxidants in serum samples, indicating its potential for the on-site monitoring of antioxidant-related diseases. This advancement holds promise for various applications, including the real-time monitoring of antioxidant levels in biological samples, the early diagnosis of antioxidant-related diseases, and personalized medicine. Furthermore, the success of our electrochromic sensor design highlights the potential for exploring similar strategies in the development of sensors for diverse analytes, showcasing the versatility and adaptability of this approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
材料十三郎完成签到,获得积分10
刚刚
刚刚
赖林发布了新的文献求助10
1秒前
2秒前
木头人应助13333采纳,获得10
2秒前
3秒前
肖鹏完成签到,获得积分20
3秒前
lppp完成签到 ,获得积分10
4秒前
垃圾完成签到 ,获得积分10
5秒前
你好夏天完成签到 ,获得积分10
6秒前
12345完成签到,获得积分10
12秒前
nn完成签到,获得积分10
12秒前
二二二完成签到 ,获得积分10
14秒前
Lucas应助民族风采纳,获得10
17秒前
19秒前
20秒前
21秒前
dd完成签到,获得积分10
21秒前
6692067发布了新的文献求助10
22秒前
23秒前
刘金磊完成签到,获得积分10
23秒前
Ava应助zht采纳,获得10
25秒前
柠溪完成签到 ,获得积分10
25秒前
可爱的函函应助struggle采纳,获得10
25秒前
absb发布了新的文献求助50
26秒前
dd发布了新的文献求助10
26秒前
jun2008x完成签到 ,获得积分10
26秒前
犹豫的幻灵完成签到,获得积分10
27秒前
27秒前
28秒前
kai完成签到,获得积分10
30秒前
研究生end发布了新的文献求助20
30秒前
辛谷方松永旭完成签到,获得积分10
31秒前
CHANL发布了新的文献求助10
31秒前
林西雨完成签到,获得积分10
32秒前
32秒前
33秒前
absb完成签到,获得积分10
34秒前
SciGPT应助顺弟er采纳,获得10
34秒前
struggle完成签到,获得积分10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284152
求助须知:如何正确求助?哪些是违规求助? 4437733
关于积分的说明 13814786
捐赠科研通 4318688
什么是DOI,文献DOI怎么找? 2370566
邀请新用户注册赠送积分活动 1365978
关于科研通互助平台的介绍 1329429