材料科学
电容器
储能
电介质
陶瓷
铁电性
光电子学
工程物理
电压
复合材料
电气工程
功率(物理)
热力学
物理
工程类
作者
Changbai Long,Zhen Su,Huiming Song,An Xu,Laijun Liu,Yang Li,Kun Zheng,Wei Ren,Haijun Wu,Xiangdong Ding
标识
DOI:10.1016/j.ensm.2023.103055
摘要
Advanced energy storage capacitors play important roles in modern power systems and electronic devices. Next-generation high/pulsed power capacitors will rely heavily on eco-friendly dielectric ceramics with high energy storage density (Wrec), high efficiency (η), wide work temperature range and stable charge-discharge ability, etc. Lead-free Bi0.5Na0.5TiO3 (BNT) based relaxor ferroelectric (RFE) ceramics are considered as one of the most promising candidates for energy storage capacitors. However, the application fields of them are greatly limited by their relatively low Wrec (generally <5 J/cm3). In this paper, excellent energy storage properties characterized by a great breakthrough in Wrec are achieved in a novel BNT system, (1-x)BNT-x(0.7SrTiO3-0.3Bi0.5Li0.5TiO3)+0.5 at.%Nb2O5 (x=0, 0.1, 0.2, 0.3, 0.4), by synergistically constructing highly dynamic polar nanoregions (PNRs) and nanodomains, ultrafine grains (submicron size) and intrinsic conduction. Of great importance, the x=0.4 ceramic exhibits an ultrahigh Wrec of 8.63 J/cm3 as well as a high efficiency (ƞ) of 89.6% under a giant electric field of 520 kV/cm, due to coexistence of ultrahigh polarization difference (ΔP=Pmax −Pr) and high dielectric breakdown electric strength (Eb). Furthermore, excellent temperature stability (20−180 °C), frequency stability (1−500 Hz), and cycling stability (1−105 times) with the variation of Wrec < ±4% and η < ±3% are also found in the x=0.4 ceramic. These results demonstrate that it is a very promising lead-free dielectric capacitor with enormous energy storage applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI