MD-ALL: an integrative platform for molecular diagnosis of B-acute lymphoblastic leukemia

计算生物学 计算机科学 转录组 图形用户界面 淋巴细胞白血病 RNA序列 基因 生物信息学 数据挖掘 生物 基因表达 遗传学 白血病 程序设计语言
作者
Zunsong Hu,Zhilian Jia,Jiangyue Liu,Allen Mao,Helen Han,Zhaohui Gu
出处
期刊:Haematologica [Ferrata Storti Foundation]
被引量:3
标识
DOI:10.3324/haematol.2023.283706
摘要

B-acute lymphoblastic leukemia (B-ALL) consists of dozens of subtypes defined by distinct gene expression profiles (GEP) and various genetic lesions. With the application of transcriptome sequencing (RNA sequencing [RNA-seq]), multiple novel subtypes have been identified, which lead to an advanced B-ALL classification and risk-stratification system. However, the complexity of analyzing RNA-seq data for B-ALL classification hinders the implementation of the new B-ALL taxonomy. Here, we introduce Molecular Diagnosis of Acute Lymphoblastic Leukemia (MD-ALL), an integrative platform featuring sensitive and accurate B-ALL classification based on GEP and sentinel genetic alterations from RNA-seq data. In this study, we systematically analyzed 2,955 B-ALL RNA-seq samples and generated a reference dataset representing all the reported B-ALL subtypes. Using multiple machine learning algorithms, we identified the feature genes and then established highly sensitive and accurate models for B-ALL classification using either bulk or single-cell RNA-seq data. Importantly, this platform integrates multiple aspects of key genetic lesions acquired from RNA-seq data, which include sequence mutations, large-scale copy number variations, and gene rearrangements, to perform comprehensive and definitive B-ALL classification. Through validation in a hold-out cohort of 974 samples, our models demonstrated superior performance for B-ALL classification compared with alternative tools. Moreover, to ensure accessibility and user-friendly navigation even for users with limited or no programming background, we developed an interactive graphical user interface for this MD-ALL platform, using the R Shiny package. In summary, MD-ALL is a user-friendly B-ALL classification platform designed to enable integrative, accurate, and comprehensive B-ALL subtype classification. MD-ALL is available from https://github.com/gu-lab20/MD-ALL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
山黛Liebe完成签到,获得积分10
6秒前
科研怪人发布了新的文献求助10
6秒前
童修洁发布了新的文献求助10
8秒前
10秒前
Ann完成签到,获得积分10
10秒前
12秒前
Kiki2008完成签到 ,获得积分10
14秒前
斯文败类应助童修洁采纳,获得10
14秒前
chen完成签到,获得积分10
16秒前
呆萌雪晴发布了新的文献求助10
16秒前
善学以致用应助研友_ngqyz8采纳,获得30
16秒前
落后尔白完成签到,获得积分10
16秒前
尤静柏完成签到,获得积分10
19秒前
希望天下0贩的0应助chen采纳,获得10
20秒前
20秒前
科研怪人完成签到,获得积分10
20秒前
21秒前
落后尔白发布了新的文献求助10
22秒前
22秒前
22秒前
__星星月亮太阳完成签到,获得积分10
25秒前
26秒前
jiaqi发布了新的文献求助10
26秒前
yeluoyezhi发布了新的文献求助10
26秒前
乐乐应助aa采纳,获得10
27秒前
123发布了新的文献求助10
27秒前
子乔发布了新的文献求助10
32秒前
123驳回了传奇3应助
32秒前
烟花应助jiaqi采纳,获得10
34秒前
粥粥完成签到,获得积分10
35秒前
38秒前
38秒前
humengxiao完成签到 ,获得积分10
39秒前
maox1aoxin应助kchen85采纳,获得50
40秒前
研友_VZG7GZ应助123采纳,获得10
40秒前
武大聪明丶完成签到,获得积分10
40秒前
体贴的若剑完成签到,获得积分10
40秒前
40秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Education and Upward Social Mobility in China: Imagining Positive Sociology with Bourdieu 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3352928
求助须知:如何正确求助?哪些是违规求助? 2977777
关于积分的说明 8681926
捐赠科研通 2658892
什么是DOI,文献DOI怎么找? 1455972
科研通“疑难数据库(出版商)”最低求助积分说明 674206
邀请新用户注册赠送积分活动 664884