MD-ALL: an integrative platform for molecular diagnosis of B-acute lymphoblastic leukemia

计算生物学 计算机科学 转录组 图形用户界面 淋巴细胞白血病 RNA序列 基因 生物信息学 数据挖掘 生物 基因表达 遗传学 白血病 程序设计语言
作者
Zunsong Hu,Zhilian Jia,Jiangyue Liu,Allen Mao,Helen Han,Zhaohui Gu
出处
期刊:Haematologica [Ferrata Storti Foundation]
被引量:3
标识
DOI:10.3324/haematol.2023.283706
摘要

B-acute lymphoblastic leukemia (B-ALL) consists of dozens of subtypes defined by distinct gene expression profiles (GEP) and various genetic lesions. With the application of transcriptome sequencing (RNA sequencing [RNA-seq]), multiple novel subtypes have been identified, which lead to an advanced B-ALL classification and risk-stratification system. However, the complexity of analyzing RNA-seq data for B-ALL classification hinders the implementation of the new B-ALL taxonomy. Here, we introduce Molecular Diagnosis of Acute Lymphoblastic Leukemia (MD-ALL), an integrative platform featuring sensitive and accurate B-ALL classification based on GEP and sentinel genetic alterations from RNA-seq data. In this study, we systematically analyzed 2,955 B-ALL RNA-seq samples and generated a reference dataset representing all the reported B-ALL subtypes. Using multiple machine learning algorithms, we identified the feature genes and then established highly sensitive and accurate models for B-ALL classification using either bulk or single-cell RNA-seq data. Importantly, this platform integrates multiple aspects of key genetic lesions acquired from RNA-seq data, which include sequence mutations, large-scale copy number variations, and gene rearrangements, to perform comprehensive and definitive B-ALL classification. Through validation in a hold-out cohort of 974 samples, our models demonstrated superior performance for B-ALL classification compared with alternative tools. Moreover, to ensure accessibility and user-friendly navigation even for users with limited or no programming background, we developed an interactive graphical user interface for this MD-ALL platform, using the R Shiny package. In summary, MD-ALL is a user-friendly B-ALL classification platform designed to enable integrative, accurate, and comprehensive B-ALL subtype classification. MD-ALL is available from https://github.com/gu-lab20/MD-ALL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lin完成签到,获得积分10
2秒前
3秒前
Owen应助现代雪晴采纳,获得10
4秒前
5秒前
5秒前
swby完成签到,获得积分10
6秒前
田様应助wellme采纳,获得10
7秒前
annali完成签到,获得积分10
7秒前
7秒前
岁月静好发布了新的文献求助10
7秒前
852应助小小阿杰采纳,获得10
8秒前
感动忆霜发布了新的文献求助10
9秒前
木子完成签到,获得积分10
9秒前
9秒前
kekerenren发布了新的文献求助10
9秒前
小蘑菇应助ZhangR采纳,获得10
10秒前
annali发布了新的文献求助10
11秒前
11秒前
11秒前
向前完成签到,获得积分10
11秒前
12秒前
俊鱼完成签到,获得积分10
12秒前
13秒前
smart完成签到,获得积分10
13秒前
14秒前
lhyqqt完成签到,获得积分10
14秒前
在水一方应助能干的吐司采纳,获得10
15秒前
16秒前
现代雪晴发布了新的文献求助10
17秒前
饼干加冰淇淋完成签到,获得积分10
17秒前
lxz发布了新的文献求助10
17秒前
18秒前
IanYoung71发布了新的文献求助10
18秒前
18秒前
沉默凡桃发布了新的文献求助10
19秒前
香蕉觅云应助Riggle G采纳,获得10
19秒前
彭于彦祖应助南瓜气气采纳,获得30
19秒前
20秒前
ZhangR完成签到,获得积分10
20秒前
小肉球完成签到 ,获得积分10
21秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962134
求助须知:如何正确求助?哪些是违规求助? 3508388
关于积分的说明 11140655
捐赠科研通 3241036
什么是DOI,文献DOI怎么找? 1791184
邀请新用户注册赠送积分活动 872809
科研通“疑难数据库(出版商)”最低求助积分说明 803371