A new framework for electricity price forecasting via multi-head self-attention and CNN-based techniques in the competitive electricity market

电价预测 电力市场 计算机科学 投标 智能电网 过程(计算) 需求响应 人工智能 计量经济学 数学优化 运筹学 微观经济学 经济 生态学 数学 电气工程 生物 工程类 操作系统
作者
Alireza Pourdaryaei,Mohammad Mohammadi,Hamza Mubarak,Abdallah Abdellatif,Mazaher Karimi,Elena Gryazina,Vladimir Terzija
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:235: 121207-121207 被引量:15
标识
DOI:10.1016/j.eswa.2023.121207
摘要

Due to recent technical improvements, the smart grid has become a feasible platform for electricity market participants to successfully regulate their bidding process based on demand-side management (DSM) perspectives. At this level, practical design, implementation, and assessment of numerous demand response mechanisms and robust short-term price forecasting development in day-ahead transactions are all critical. The accuracy and effectiveness of the day-ahead price forecasting process are crucial concerns in a deregulated market. In this market, the reason for low accuracy is the limitation of electricity generation compared to the electricity demand variations. Hence, this study proposes a suitable technique for forecasting electricity prices using a multi-head self-attention and Convolutional Neural networks (CNN) based approach. Further, this study develops a feature selection technique using mutual information (MI) and neural networks (NN) to choose suitable input variable subsets significantly affecting electricity price predictions simultaneously. The combination of MI and NN reduces the number of input features used in the model, thereby decreasing the computational complexity of the NN. The actual data sets from the Ontario electricity market in 2020 are acquired to verify the simulation results. Finally, the simulation results proved the efficiency of the proposed method by demonstrating increased accuracy by attaining the lowest average value for MAPE and RMSE with a value of 1.75% and 0.0085, respectively, and compared to results obtained by recent computational intelligence approaches. By attaining accurate electricity price results, the significance of this study can be summed up as aiding the electricity industry's operators in administering effective energy management, efficient resource allocation, and informed decision-making.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
满意之玉发布了新的文献求助10
1秒前
不配.应助陶小陶采纳,获得10
3秒前
重要手机完成签到 ,获得积分10
8秒前
linda268完成签到 ,获得积分10
10秒前
进击的研狗完成签到 ,获得积分10
10秒前
豆浆来点蒜泥完成签到,获得积分10
10秒前
似风完成签到,获得积分10
10秒前
JingFanGao完成签到,获得积分10
12秒前
潮湿小兰花完成签到 ,获得积分10
13秒前
布吉岛呀完成签到 ,获得积分10
13秒前
14秒前
镜哥完成签到,获得积分10
15秒前
冷静的寒荷完成签到 ,获得积分10
19秒前
19秒前
开心的大娘完成签到,获得积分10
20秒前
hutian完成签到,获得积分10
20秒前
折耳根发布了新的文献求助10
20秒前
23秒前
邹欣桐完成签到 ,获得积分10
23秒前
二甲双胍发布了新的文献求助10
23秒前
Whisper完成签到 ,获得积分10
23秒前
吃甜杏子完成签到,获得积分10
24秒前
书霂完成签到,获得积分10
28秒前
健壮的芷容完成签到,获得积分10
31秒前
相爱就永远在一起完成签到,获得积分10
33秒前
miaomiao完成签到,获得积分10
34秒前
可以的完成签到,获得积分10
35秒前
顺利白竹完成签到 ,获得积分10
38秒前
Cassie应助zizi采纳,获得10
39秒前
40秒前
Olive完成签到,获得积分10
41秒前
逝水完成签到 ,获得积分10
44秒前
111完成签到 ,获得积分10
51秒前
54秒前
Nancy发布了新的文献求助10
56秒前
科研圣体完成签到 ,获得积分10
57秒前
zhubin完成签到,获得积分10
59秒前
fantasy完成签到,获得积分10
1分钟前
1分钟前
Kristina完成签到,获得积分10
1分钟前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
encyclopedia of computational mechanics,2 edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3268841
求助须知:如何正确求助?哪些是违规求助? 2908247
关于积分的说明 8345239
捐赠科研通 2578647
什么是DOI,文献DOI怎么找? 1402212
科研通“疑难数据库(出版商)”最低求助积分说明 655381
邀请新用户注册赠送积分活动 634500