TrACES of time: Transcriptomic analyses for the contextualization of evidential stains – Identification of RNA markers for estimating time-of-day of bloodstain deposition

鉴定(生物学) 转录组 计算生物学 规范化(社会学) 样品(材料) 污渍 生物 生物信息学 计算机科学 遗传学 色谱法 染色 化学 基因表达 基因 生态学 社会学 人类学
作者
Annica Gosch,Anu Bhardwaj,Cornelius Courts
出处
期刊:Forensic Science International-genetics [Elsevier]
卷期号:67: 102915-102915 被引量:5
标识
DOI:10.1016/j.fsigen.2023.102915
摘要

Obtaining forensically relevant information beyond who deposited a biological stain on how and under which circumstances it was deposited is a question of increasing importance in forensic molecular biology. In the past few years, several studies have been produced on the potential of gene expression analysis to deliver relevant contextualizing information, e.g. on nature and condition of a stain as well as aspects of stain deposition timing. However, previous attempts to predict the time-of-day of sample deposition were all based on and thus limited by previously described diurnal oscillators. Herein, we newly approached this goal by applying current sequencing technologies and statistical methods to identify novel candidate markers for forensic time-of-day predictions from whole transcriptome analyses. To this purpose, we collected whole blood samples from ten individuals at eight different time points throughout the day, performed whole transcriptome sequencing and applied biostatistical algorithms to identify 81 mRNA markers with significantly differential expression as candidates to predict the time of day. In addition, we performed qPCR analysis to assess the characteristics of a subset of 13 candidate predictors in dried and aged blood stains. While we demonstrated the general possibility of using the selected candidate markers to predict time-of-day of sample deposition, we also observed notable variation between different donors and storage conditions, highlighting the relevance of employing accurate quantification methods in combination with robust normalization procedures.This study's results are foundational and may be built upon when developing a targeted assay for time-of-day predictions from forensic blood samples in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
薛枏完成签到,获得积分10
刚刚
不潮薯饼应助LI采纳,获得10
1秒前
不潮薯饼应助LI采纳,获得20
1秒前
1秒前
2秒前
方hh完成签到,获得积分10
2秒前
简单粗暴导师完成签到,获得积分10
2秒前
2秒前
抠脚大汉完成签到,获得积分10
2秒前
水水完成签到,获得积分10
3秒前
hongyu完成签到 ,获得积分10
3秒前
小猫多鱼完成签到,获得积分10
4秒前
junhan发布了新的文献求助10
4秒前
pam完成签到,获得积分10
4秒前
4秒前
4秒前
ccy2023完成签到,获得积分10
5秒前
科目三应助瓶子采纳,获得10
5秒前
Teen发布了新的文献求助10
6秒前
7秒前
7秒前
小马过河发布了新的文献求助10
7秒前
失眠的诗蕊完成签到,获得积分0
7秒前
9秒前
10秒前
不爱说话完成签到,获得积分10
10秒前
历史真相发布了新的文献求助10
11秒前
小夫发布了新的文献求助10
11秒前
11秒前
大个应助大巧若拙采纳,获得10
11秒前
12秒前
amy完成签到,获得积分0
13秒前
丘比特应助小马过河采纳,获得10
14秒前
14秒前
领导范儿应助健康的朋友采纳,获得30
14秒前
许多鱼发布了新的文献求助10
15秒前
NexusExplorer应助英勇的曼卉采纳,获得10
15秒前
英姑应助FIGGIEKIO采纳,获得10
15秒前
111完成签到,获得积分10
16秒前
17秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3258553
求助须知:如何正确求助?哪些是违规求助? 2900371
关于积分的说明 8310106
捐赠科研通 2569621
什么是DOI,文献DOI怎么找? 1395861
科研通“疑难数据库(出版商)”最低求助积分说明 653318
邀请新用户注册赠送积分活动 631221