亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Performance evaluation of hybrid constructed wetlands for nitrogen removal and statistical approaches

均方误差 支持向量机 水力停留时间 生化需氧量 氮气 环境科学 污染 化学需氧量 环境工程 浊度 线性回归 数学 统计 计算机科学 机器学习 化学 生态学 污水处理 有机化学 生物
作者
Suresh Kumar,Vikramaditya Sangwan,Munish Kumar,Shweta Shweta,Shivani Khandelwal,Manoj Kumar,Surinder Deswal
出处
期刊:Water Environment Research [Wiley]
卷期号:95 (10) 被引量:1
标识
DOI:10.1002/wer.10932
摘要

Nitrogen pollution in water bodies has become a pressing environmental and public health issue worldwide, demanding the implementation of effective nitrogen removal strategies. This research paper delves into the performance evaluation of hybrid constructed wetlands (HCWs) as a sustainable and innovative approach for nitrogen removal, employing a comprehensive year-long dataset gathered from a practical setup. The study collected data under diverse operating conditions to investigate the effectiveness of HCWs in removing nitrogen. Results revealed that HCWs achieved nitrogen removal efficiencies ranging from 28% to 65%, influenced by temperature and hydraulic retention time. Optimal removal occurred at an average temperature of 28°C and a 4-day hydraulic retention time. Notably, performance declined during colder periods, with temperatures below 15°C. The study also aims to predict nitrogen removal by three modeling techniques, that is, artificial neural networks (ANNs), support vector machines Pearson VII kernel function (SVM PUK), and multiple linear regression (MLR). Prediction has been done considering temperature (TEMP), hydraulic loading rate (HLR), initial concentration of chemical oxygen demand (COD) (CODin), initial concentration of total nitrogen (TNin ), initial concentration of total phosphorous (TPin ), and initial concentration of turbidity (TBin ) as input parameters, whereas reduction of total nitrogen (RED TN) is regarded as output parameter. The performance of the soft computing techniques has been compared in terms of coefficient of determination (R2 ), root mean square error (RMSE), and mean absolute error (MAE). The analysis revealed that the performance of the SVM (PUK) model (R2 : 0.572, RMSE: 0.0359, MAE: 0.0294) for the prediction of TN reduction is superior followed by MLR (R2 : 0.562, RMSE: 0.0365, MAE: 0.0294) and ANN (R2 : 0.597, RMSE: 0.0377, MAE: 0.0301). The present study concludes that the treated effluent by the HCWs, using water hyacinth and water lettuce, is of fair quality, thus having potential application for the treatment of rice mill wastewater in warmer climates. Further, machine learning approaches employed in estimating the total nitrogen reduction by HCWs technology have shown promising applicability and utilization in such studies. PRACTITIONER POINTS: Hybrid constructed wetlands (HCWs) are effective in removing nitrogen from wastewater. The performance of HCWs in nitrogen removal can vary due to physical, chemical, and biological processes. The performance of the HCWs highly depends on temperature and hydraulic retention time. Artificial neural networks (ANNs) and support vector machines (SVMs) provided better predictions of nitrogen removal with high accuracy and low root mean square error.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丰知然应助辛勤千筹采纳,获得10
13秒前
25秒前
麦斯发布了新的文献求助10
28秒前
43秒前
麦斯完成签到,获得积分10
46秒前
IlIIlIlIIIllI应助科研通管家采纳,获得10
56秒前
小蘑菇应助爱听歌笑寒采纳,获得10
1分钟前
1分钟前
1分钟前
慵懒的猫完成签到 ,获得积分10
1分钟前
1分钟前
成就仇天完成签到 ,获得积分10
1分钟前
2分钟前
摘星012完成签到 ,获得积分10
2分钟前
Green7完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
cj完成签到,获得积分10
3分钟前
3分钟前
小胡爱科研完成签到 ,获得积分10
4分钟前
KSung完成签到 ,获得积分10
4分钟前
丘比特应助科研通管家采纳,获得10
4分钟前
5分钟前
5分钟前
yi只熊发布了新的文献求助10
5分钟前
震动的听枫完成签到,获得积分10
5分钟前
5分钟前
zcx完成签到,获得积分10
5分钟前
烟花应助zcx采纳,获得10
5分钟前
每天都是新的一天完成签到,获得积分10
5分钟前
5分钟前
吴WU发布了新的文献求助10
5分钟前
6分钟前
zcx发布了新的文献求助10
6分钟前
6分钟前
搜集达人应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
吴WU完成签到,获得积分10
7分钟前
爱寻完成签到 ,获得积分10
7分钟前
ding应助粒子采纳,获得10
7分钟前
Makkki完成签到,获得积分10
8分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
体心立方金属铌、钽及其硼化物中滑移与孪生机制的研究 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3450450
求助须知:如何正确求助?哪些是违规求助? 3045935
关于积分的说明 9003702
捐赠科研通 2734577
什么是DOI,文献DOI怎么找? 1500058
科研通“疑难数据库(出版商)”最低求助积分说明 693318
邀请新用户注册赠送积分活动 691454