Collagen and derivatives-based materials as substrates for the establishment of glioblastoma organoids

胶质母细胞瘤 肿瘤微环境 胶质瘤 脑瘤 计算生物学 纳米技术 癌症研究 生物 化学 计算机科学 材料科学 肿瘤细胞 医学 病理
作者
Lu Sun,Yuelin Jiang,Hong Tan,Ruichao Liang
出处
期刊:International Journal of Biological Macromolecules [Elsevier BV]
卷期号:254: 128018-128018 被引量:3
标识
DOI:10.1016/j.ijbiomac.2023.128018
摘要

Glioblastoma (GBM) is a common primary brain malignancy known for its ability to invade the brain, resistance to chemotherapy and radiotherapy, tendency to recur frequently, and unfavorable prognosis. Attempts have been undertaken to create 2D and 3D models, such as glioblastoma organoids (GBOs), to recapitulate the glioma microenvironment, explore tumor biology, and develop efficient therapies. However, these models have limitations and are unable to fully recapitulate the complex networks formed by the glioma microenvironment that promote tumor cell growth, invasion, treatment resistance, and immune escape. Therefore, it is necessary to develop advanced experimental models that could better simulate clinical physiology. Here, we review recent advances in natural biomaterials (mainly focus on collagen and its derivatives)-based GBO models, as in vitro experimental platforms to simulate GBM tumor biology and response to tested drugs. Special attention will be given to 3D models that use collagen, gelatin, further modified derivatives, and composite biomaterials (e.g., with other natural or synthetic polymers) as substrates. Application of these collagen/derivatives-constructed GBOs incorporate the physical as well as chemical characteristics of the GBM microenvironment. A perspective on future research is given in terms of current issues. Generally, natural materials based on collagen/derivatives (monomers or composites) are expected to enrich the toolbox of GBO modeling substrates and potentially help to overcome the limitations of existing models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Enoch发布了新的文献求助10
刚刚
研友_VZG7GZ应助甜蜜水蜜桃采纳,获得10
刚刚
量子星尘发布了新的文献求助10
1秒前
5秒前
5秒前
圈圈发布了新的文献求助10
5秒前
科研通AI2S应助Lucia采纳,获得10
6秒前
bkagyin应助Lucia采纳,获得10
6秒前
懦弱的难敌完成签到,获得积分10
7秒前
7秒前
酷波er应助jdj采纳,获得30
7秒前
9秒前
10秒前
11秒前
fabian发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
lcs发布了新的文献求助10
12秒前
13秒前
13秒前
陈龙完成签到,获得积分10
15秒前
幸福大白发布了新的文献求助30
16秒前
优美匕发布了新的文献求助10
17秒前
任性的白玉完成签到 ,获得积分10
19秒前
量子星尘发布了新的文献求助10
20秒前
Ava应助圈圈采纳,获得10
20秒前
爱学习的瑞瑞子完成签到 ,获得积分10
22秒前
22秒前
可爱的函函应助优美匕采纳,获得10
24秒前
鲤角兽完成签到,获得积分10
24秒前
24秒前
我是老大应助健康的寄风采纳,获得10
25秒前
量子星尘发布了新的文献求助10
26秒前
Orange应助lcs采纳,获得10
26秒前
27秒前
陈st完成签到 ,获得积分10
28秒前
科目三应助Chuwei采纳,获得10
29秒前
shuangshi1010发布了新的文献求助30
29秒前
30秒前
星辰发布了新的文献求助10
31秒前
32秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
An experimental and analytical investigation on the fatigue behaviour of fuselage riveted lap joints: The significance of the rivet squeeze force, and a comparison of 2024-T3 and Glare 3 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3664444
求助须知:如何正确求助?哪些是违规求助? 3224488
关于积分的说明 9757694
捐赠科研通 2934379
什么是DOI,文献DOI怎么找? 1606832
邀请新用户注册赠送积分活动 758873
科研通“疑难数据库(出版商)”最低求助积分说明 735012