Towards Domain Generalization for ECG and EEG Classification: Algorithms and Benchmarks

水准点(测量) 生物信号 计算机科学 概化理论 一般化 人工智能 机器学习 领域(数学) 领域(数学分析) 人工神经网络 过程(计算) 脑电图 算法 无线 数学 心理学 电信 数学分析 统计 大地测量学 精神科 纯数学 地理 操作系统
作者
Aristotelis Ballas,Christos Diou
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:8 (1): 44-54 被引量:2
标识
DOI:10.1109/tetci.2023.3306253
摘要

Despite their immense success in numerous fields, machine and deep learning systems have not yet been able to firmly establish themselves in mission-critical applications in healthcare. One of the main reasons lies in the fact that when models are presented with previously unseen, Out-of-Distribution samples, their performance deteriorates significantly. This is known as the Domain Generalization (DG) problem. Our objective in this work is to propose a benchmark for evaluating DG algorithms, in addition to introducing a novel architecture for tackling DG in biosignal classification. In this article, we describe the Domain Generalization problem for biosignals, focusing on electrocardiograms (ECG) and electroencephalograms (EEG) and propose and implement an open-source biosignal DG evaluation benchmark. Furthermore, we adapt state-of-the-art DG algorithms from computer vision to the problem of 1D biosignal classification and evaluate their effectiveness. Finally, we also introduce a novel neural network architecture that leverages multi-layer representations for improved model generalizability. By implementing the above DG setup we are able to experimentally demonstrate the presence of the DG problem in ECG and EEG datasets. In addition, our proposed model demonstrates improved effectiveness compared to the baseline algorithms, exceeding the state-of-the-art in both datasets. Recognizing the significance of the distribution shift present in biosignal datasets, the presented benchmark aims at urging further research into the field of biomedical DG by simplifying the evaluation process of proposed algorithms. To our knowledge, this is the first attempt at developing an open-source framework for evaluating ECG and EEG DG algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
房梦寒完成签到,获得积分10
1秒前
秋枫忆完成签到,获得积分10
2秒前
诗篇完成签到,获得积分20
2秒前
徐浩彬完成签到 ,获得积分10
2秒前
3秒前
Benjamin完成签到,获得积分10
3秒前
小马甲应助orange采纳,获得10
3秒前
水知寒完成签到,获得积分10
3秒前
多科特屎全紫关注了科研通微信公众号
3秒前
英俊的铭应助星星采纳,获得10
4秒前
深情安青应助陈陈采纳,获得10
4秒前
天冷了hhhdh应助哎呦喂采纳,获得30
4秒前
噗噗完成签到,获得积分10
4秒前
研友_VZG7GZ应助浪费采纳,获得10
4秒前
汉堡包应助鸿宇采纳,获得10
5秒前
我是王浩腾我是健身王完成签到,获得积分20
5秒前
丰富的龙猫完成签到,获得积分10
5秒前
5秒前
5秒前
哈哈哈哈哈哈完成签到,获得积分10
6秒前
轻松的人龙完成签到,获得积分10
7秒前
自信柠檬应助忧伤的宝马采纳,获得10
7秒前
田様应助天真的思远采纳,获得10
7秒前
黎森完成签到,获得积分10
7秒前
这个文献你有么完成签到,获得积分10
7秒前
7秒前
田様应助晴晨采纳,获得10
8秒前
xiaopihaier完成签到,获得积分10
9秒前
SciGPT应助哈哈哈哈哈哈采纳,获得10
9秒前
10秒前
fan发布了新的文献求助10
10秒前
10秒前
yueyue发布了新的文献求助10
10秒前
BA1完成签到,获得积分10
10秒前
lx完成签到 ,获得积分10
11秒前
一叶发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167902
求助须知:如何正确求助?哪些是违规求助? 2819288
关于积分的说明 7925910
捐赠科研通 2479167
什么是DOI,文献DOI怎么找? 1320660
科研通“疑难数据库(出版商)”最低求助积分说明 632856
版权声明 602443