The disposal of wastewater contaminated with dyes is a prevalent global concern that necessitates the implementation of diverse remediation strategies. There are several methods available for the treatment of wastewater, one of which is photocatalytic treatment. The primary objective of this study is to assess the efficacy of a lithium borate-bismuth tungstate glass-ceramic material (0.7Li2B4O7 - 0.3Bi2WO6) in the degradation of methylene blue dye through photocatalysis under visible light irradiation conditions. The glass under consideration was prepared using the conventional melt-quench technique. The characterization of the glass was conducted using X-ray diffraction technique and Raman spectroscopy. Additionally, the glass obtained was subjected to various heat treatments in order to achieve crystallization, as assisted by differential scanning calorimetry as reported. The elemental analysis and morphology of the glass ceramics that were prepared were examined using X-ray photoemission spectroscopy (XPS) and field emission scanning electron microscopy (FE-SEM). The glass-ceramic sample exhibited a dye degradation efficiency of 73% within a time span of 240 min. The evaluation of the active species involved in degradation is also conducted through the utilisation of a scavenger test. The experiments were conducted multiple times to verify the effectiveness of the prepared glass-ceramic material for water purification purposes.