(Invited) Zinc/ Sodium Vanadium Oxide (NaV3O8) Aqueous Electrolyte Batteries: Competing Proton and Zinc Ion Insertion

水溶液 材料科学 无机化学 电解质 氧化钒 阳极 阴极 化学 电极 冶金 物理化学
作者
Amy C. Marschilok,Esther S. Takeuchi,Kenneth J. Takeuchi
出处
期刊:Meeting abstracts 卷期号:MA2023-01 (5): 920-920
标识
DOI:10.1149/ma2023-015920mtgabs
摘要

Large-scale energy storage systems suitable for pairing with renewable energy generation require low-cost materials and safety. A promising candidate for large scale storage is the aqueous Zn-ion battery (AZIB). Zinc metal is a useful anode for aqueous batteries as it possesses a high theoretical capacity (820 mAh/g), low redox potential (-0.76 V vs SHE), and allows for two electron transfers per Zn 2+ (de)insertion. Sodium vanadium oxides have been investigated as cathode materials for AZIBs as the size of Na + is larger than Zn 2+ facilitating ion diffusion within the lattice. Specifically, sodium vanadium oxide (NaV 3 O 8 , NVO) in an anhydrous form and its monohydrate (NaV 3 O 8 ·H2O) have been identified as candidate materials. Notably, one of the phases that forms during the discharge of these materials within a zinc battery system is zinc hydroxy-sulfate (Zn 4 (SO 4 )(OH) 6 ·5H 2 O (ZHS) and has been attributed to H + insertion in NVO where the H + insertion is accompanied by local pH change and precipitation of the ZHS. This presentation probes the competing zinc ion and proton insertion mechanisms for discharge of NVO. The impact of (dis)charge rate on reduction products formed is determined with quantitative Rietveld refinement analysis. Further, synchrotron based EDXRD providing spatio-temporally resolved data is used to determine phase evolution operando in different locations within thick porous NVO positive electrodes. Determining the reaction progression within thick electrodes while under load is an important aspect of scaling batteries appropriately, where these results can have relevance to development of future sustainable energy storage systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yiwan发布了新的文献求助30
刚刚
橙汁完成签到 ,获得积分20
刚刚
刚刚
乐乐应助快乐寄风采纳,获得10
1秒前
mo发布了新的文献求助10
1秒前
安静翰发布了新的文献求助10
2秒前
芜湖芜湖发布了新的文献求助10
2秒前
3秒前
3秒前
玲珑油豆腐发布了新的文献求助100
5秒前
观鹤轩发布了新的文献求助10
5秒前
闪闪的乐蕊完成签到,获得积分10
5秒前
6秒前
gan发布了新的文献求助10
7秒前
小蘑菇应助不周采纳,获得10
7秒前
生动的水云完成签到,获得积分20
9秒前
临风发布了新的文献求助10
10秒前
我是老大应助庶民文献采纳,获得10
12秒前
李健应助廖qingliang采纳,获得10
12秒前
Jolly完成签到,获得积分10
12秒前
12秒前
共享精神应助yy采纳,获得10
13秒前
深情安青应助温柔的凡桃采纳,获得30
14秒前
123完成签到,获得积分10
14秒前
15秒前
15秒前
17秒前
17秒前
TZZZZ完成签到,获得积分10
17秒前
17秒前
杭汝燕发布了新的文献求助30
18秒前
18秒前
不周发布了新的文献求助10
19秒前
HarbinDing发布了新的文献求助10
19秒前
李新祎发布了新的文献求助10
20秒前
20秒前
852应助carryxxx采纳,获得20
20秒前
C和弦完成签到,获得积分20
21秒前
21秒前
22秒前
高分求助中
Sustainability in Tides Chemistry 2800
Shape Determination of Large Sedimental Rock Fragments 2000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3133178
求助须知:如何正确求助?哪些是违规求助? 2784386
关于积分的说明 7765974
捐赠科研通 2439577
什么是DOI,文献DOI怎么找? 1296879
科研通“疑难数据库(出版商)”最低求助积分说明 624767
版权声明 600771