A data-driven prediction model for the remaining useful life prediction of lithium-ion batteries

联营 计算机科学 电池(电) 主成分分析 可靠性(半导体) 人工智能 数据挖掘 支持向量机 人工神经网络 核(代数) 卷积神经网络 机器学习 模式识别(心理学) 功率(物理) 物理 数学 量子力学 组合数学
作者
Juqiang Feng,Feng Cai,H. J. Li,Kaifeng Huang,Hao Yin
出处
期刊:Chemical Engineering Research & Design [Elsevier BV]
卷期号:180: 601-615 被引量:23
标识
DOI:10.1016/j.psep.2023.10.042
摘要

Accurate prediction of remaining useful life (RUL) can ensure the safety and reliability of power batteries during operation, reduce the failure rate and operating costs, and enhance user experience. However, battery degradation is a complex, nonlinear dynamic process that is difficult to fully comprehend and predicting RUL remains a significant challenge. To address this issue, the hybrid data-driven prediction model PCA-CNN-BiLSTM was proposed in this paper, which combines principal component analysis (PCA), convolutional neural network (CNN), and bi-directional long short-term memory (Bi-LSTM) network. PCA was applied to downscale and whiten the health factor (HF) to maximize the extraction of important features of lifespan decay, while reducing the correlation between features. The convolution kernel of the CNN was used to explore the local region feature information of the input information and search for the common patterns among the neighboring data. Additionally, the model parameters and computational efforts were reduced through pooling. Finally, battery RUL prediction was achieved using Bi-LSTM, which has the advantages of effectively enhancing model accuracy and reducing the risk of over-fitting by taking into account both past and future data. The performance of the proposed model was evaluated utilizing NASA and CALCE's battery datasets, and the results suggest that it exhibits a high level of accuracy across various datasets. Compared to other methods, the PCA-CNN-BiLSTM method has the best performance indicators for predicting battery RUL, including RMSE, MAE, MAPE, RULe and DOL. This indicates that the proposed model has better fitting performance, accuracy, robustness, and generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
随遇而安应助gsj采纳,获得10
2秒前
百里如雪发布了新的文献求助10
2秒前
Akim应助热切菩萨采纳,获得20
2秒前
搜集达人应助晓巨人采纳,获得10
3秒前
dp_nj完成签到,获得积分10
3秒前
biubiubiu发布了新的文献求助10
3秒前
害羞的山晴完成签到,获得积分10
3秒前
4秒前
guohuiting发布了新的文献求助10
4秒前
自由的秋灵完成签到,获得积分10
4秒前
zzzyc完成签到,获得积分10
7秒前
铁路桥完成签到,获得积分10
8秒前
李健的粉丝团团长应助lqy采纳,获得10
8秒前
sunrase发布了新的文献求助10
9秒前
TAIL完成签到,获得积分20
9秒前
烟花应助青鸟采纳,获得10
9秒前
结实的青荷完成签到,获得积分10
10秒前
10秒前
科研通AI5应助幽默的老师采纳,获得10
10秒前
10秒前
waive完成签到,获得积分10
10秒前
10秒前
10秒前
桐桐应助guohuiting采纳,获得10
11秒前
shuangshuang完成签到,获得积分10
12秒前
13秒前
14秒前
dsada完成签到,获得积分10
14秒前
科研通AI5应助Betty采纳,获得10
15秒前
15秒前
OA发布了新的文献求助10
16秒前
16秒前
lieven完成签到,获得积分10
17秒前
自觉的蜜蜂完成签到,获得积分10
17秒前
安详书蝶发布了新的文献求助10
17秒前
chengzi发布了新的文献求助10
18秒前
随便吧发布了新的文献求助10
18秒前
XSY关闭了XSY文献求助
18秒前
汤瀚文发布了新的文献求助10
18秒前
精明的道天关注了科研通微信公众号
18秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3768954
求助须知:如何正确求助?哪些是违规求助? 3313999
关于积分的说明 10169957
捐赠科研通 3028917
什么是DOI,文献DOI怎么找? 1662170
邀请新用户注册赠送积分活动 794707
科研通“疑难数据库(出版商)”最低求助积分说明 756358