A data-driven prediction model for the remaining useful life prediction of lithium-ion batteries

联营 计算机科学 电池(电) 主成分分析 可靠性(半导体) 人工智能 数据挖掘 支持向量机 人工神经网络 核(代数) 卷积神经网络 机器学习 模式识别(心理学) 功率(物理) 物理 数学 量子力学 组合数学
作者
Juqiang Feng,Feng Cai,H. J. Li,Kuo‐Cheng Huang,Hongcheng Yin
出处
期刊:Chemical Engineering Research & Design [Elsevier]
卷期号:180: 601-615 被引量:3
标识
DOI:10.1016/j.psep.2023.10.042
摘要

Accurate prediction of remaining useful life (RUL) can ensure the safety and reliability of power batteries during operation, reduce the failure rate and operating costs, and enhance user experience. However, battery degradation is a complex, nonlinear dynamic process that is difficult to fully comprehend and predicting RUL remains a significant challenge. To address this issue, the hybrid data-driven prediction model PCA-CNN-BiLSTM was proposed in this paper, which combines principal component analysis (PCA), convolutional neural network (CNN), and bi-directional long short-term memory (Bi-LSTM) network. PCA was applied to downscale and whiten the health factor (HF) to maximize the extraction of important features of lifespan decay, while reducing the correlation between features. The convolution kernel of the CNN was used to explore the local region feature information of the input information and search for the common patterns among the neighboring data. Additionally, the model parameters and computational efforts were reduced through pooling. Finally, battery RUL prediction was achieved using Bi-LSTM, which has the advantages of effectively enhancing model accuracy and reducing the risk of over-fitting by taking into account both past and future data. The performance of the proposed model was evaluated utilizing NASA and CALCE's battery datasets, and the results suggest that it exhibits a high level of accuracy across various datasets. Compared to other methods, the PCA-CNN-BiLSTM method has the best performance indicators for predicting battery RUL, including RMSE, MAE, MAPE, RULe and DOL. This indicates that the proposed model has better fitting performance, accuracy, robustness, and generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
seven发布了新的文献求助10
刚刚
1秒前
1秒前
领导范儿应助坚定青柏采纳,获得10
1秒前
超大玻璃瓶完成签到 ,获得积分10
1秒前
荷荷HeHe完成签到 ,获得积分10
2秒前
饱满懿轩完成签到,获得积分10
2秒前
小石头完成签到,获得积分10
2秒前
科研通AI5应助撒西不理采纳,获得10
3秒前
内向莛完成签到,获得积分10
3秒前
蒙蒙完成签到 ,获得积分10
3秒前
haku发布了新的文献求助10
3秒前
3秒前
柏123发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
5秒前
Ava应助学习吧澧采纳,获得10
5秒前
5秒前
之间完成签到,获得积分10
5秒前
炉子应助行毅文采纳,获得10
6秒前
6秒前
大模型应助平淡的访风采纳,获得10
7秒前
yun完成签到,获得积分10
7秒前
7秒前
快乐的幼丝完成签到 ,获得积分10
8秒前
烟花应助Sandro采纳,获得10
8秒前
诗蕊发布了新的文献求助20
8秒前
9秒前
小二郎应助三笠采纳,获得10
9秒前
li发布了新的文献求助10
9秒前
zp发布了新的文献求助10
9秒前
啾啾发布了新的文献求助10
9秒前
lxl发布了新的文献求助10
9秒前
忘久完成签到,获得积分10
9秒前
干净士晋完成签到,获得积分10
10秒前
高贵逍遥完成签到 ,获得积分10
10秒前
YMAO完成签到,获得积分20
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3564116
求助须知:如何正确求助?哪些是违规求助? 3137325
关于积分的说明 9421827
捐赠科研通 2837701
什么是DOI,文献DOI怎么找? 1559976
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717246