Energy-Efficient Graph Reinforced vNFC Deployment in Elastic Optical Inter-DC Networks

计算机科学 供应 能源消耗 软件部署 整数规划 分布式计算 网络拓扑 虚拟化 计算机网络 算法 云计算 工程类 操作系统 电气工程
作者
Ruijie Zhu,Wenchao Zhang,Peisen Wang,Jianrui Chen,Jingjing Wang,Shui Yu
出处
期刊:IEEE Transactions on Network Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:11 (2): 1591-1604 被引量:10
标识
DOI:10.1109/tnse.2023.3325828
摘要

With the rapid development of information and communication technology (ICT), the demand for flexible and cost-effective network services (NSs) is growing exponentially. Network function virtualization (NFV) based on elastic optical data center interconnections (EO-DCI) can provide flexible and timely NSs. One of the major concerns that draws the attention of researchers is the exponential growth of the energy consumption of the EO-DCI networks. Therefore, it is a practical issue to reduce the energy consumption of service deployment in EO-DCI networks while ensuring service success. In this paper, a flexible service provisioning based on virtual network function chain (vNFC) is exploited. Then we first formulate the energy-efficient vNFC deployment (EE-VNFD) problem in EO-DCI networks and propose an Integer Linear Programming (ILP) model of it by considering the four energy consumption components of CPUs, ports, transponders, and amplifiers. To obtain feasible solutions for real-scale problems, we propose an energy-efficient graph reinforced vNFC deployment (EGRD) algorithm based on reinforcement learning (RL) and graph convolutional networks (GCN). The performance of the EGRD algorithm is evaluated in both static and dynamic scenarios. In the static scenario, simulation results show that the EGRD algorithm achieves a near-optimal performance close to the ILP model. In the dynamic scenario, compared with two heuristic algorithms and two leading RL algorithms, the EGRD algorithm significantly reduces energy consumption in the resource-sufficient environment, and also balances energy consumption and blocking probability well in resource-limited environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ccc完成签到 ,获得积分10
刚刚
大模型应助星光采纳,获得10
2秒前
whr完成签到,获得积分10
3秒前
万能图书馆应助牛牛眉目采纳,获得10
3秒前
5秒前
6秒前
6秒前
灵儿完成签到,获得积分10
6秒前
banlu完成签到,获得积分20
8秒前
8秒前
杨禹发布了新的文献求助20
11秒前
孟琪富发布了新的文献求助10
12秒前
星光发布了新的文献求助10
14秒前
lin完成签到,获得积分10
15秒前
失眠紫青关注了科研通微信公众号
17秒前
Rainielove0215完成签到,获得积分0
18秒前
黄琳完成签到,获得积分10
19秒前
22秒前
小虎应助七七采纳,获得10
24秒前
Lei完成签到,获得积分10
25秒前
zhanghui完成签到 ,获得积分10
26秒前
26秒前
26秒前
彩色的严青完成签到,获得积分10
26秒前
27秒前
29秒前
俊逸沛菡完成签到 ,获得积分10
30秒前
失眠紫青发布了新的文献求助10
30秒前
kkdkg发布了新的文献求助10
31秒前
xzy998应助林希希采纳,获得10
31秒前
32秒前
852应助牛牛眉目采纳,获得10
32秒前
会飞的鱼完成签到,获得积分10
34秒前
顾矜应助Pp采纳,获得10
34秒前
小鱼儿发布了新的文献求助10
34秒前
长乐完成签到,获得积分10
35秒前
36秒前
周周完成签到,获得积分10
38秒前
38秒前
39秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966388
求助须知:如何正确求助?哪些是违规求助? 3511817
关于积分的说明 11160082
捐赠科研通 3246443
什么是DOI,文献DOI怎么找? 1793422
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804388