Energy-Efficient Graph Reinforced vNFC Deployment in Elastic Optical Inter-DC Networks

计算机科学 供应 能源消耗 软件部署 整数规划 分布式计算 网络拓扑 虚拟化 计算机网络 算法 云计算 工程类 电气工程 操作系统
作者
Ruijie Zhu,Wenchao Zhang,Peisen Wang,Jianrui Chen,Jingjing Wang,Shui Yu
出处
期刊:IEEE Transactions on Network Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:11 (2): 1591-1604 被引量:10
标识
DOI:10.1109/tnse.2023.3325828
摘要

With the rapid development of information and communication technology (ICT), the demand for flexible and cost-effective network services (NSs) is growing exponentially. Network function virtualization (NFV) based on elastic optical data center interconnections (EO-DCI) can provide flexible and timely NSs. One of the major concerns that draws the attention of researchers is the exponential growth of the energy consumption of the EO-DCI networks. Therefore, it is a practical issue to reduce the energy consumption of service deployment in EO-DCI networks while ensuring service success. In this paper, a flexible service provisioning based on virtual network function chain (vNFC) is exploited. Then we first formulate the energy-efficient vNFC deployment (EE-VNFD) problem in EO-DCI networks and propose an Integer Linear Programming (ILP) model of it by considering the four energy consumption components of CPUs, ports, transponders, and amplifiers. To obtain feasible solutions for real-scale problems, we propose an energy-efficient graph reinforced vNFC deployment (EGRD) algorithm based on reinforcement learning (RL) and graph convolutional networks (GCN). The performance of the EGRD algorithm is evaluated in both static and dynamic scenarios. In the static scenario, simulation results show that the EGRD algorithm achieves a near-optimal performance close to the ILP model. In the dynamic scenario, compared with two heuristic algorithms and two leading RL algorithms, the EGRD algorithm significantly reduces energy consumption in the resource-sufficient environment, and also balances energy consumption and blocking probability well in resource-limited environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助咿咿呀呀采纳,获得10
1秒前
科研通AI5应助大胆遥采纳,获得10
1秒前
1秒前
标致的安荷完成签到,获得积分10
2秒前
ABin完成签到,获得积分10
2秒前
跳跃难胜发布了新的文献求助10
2秒前
阳光的虔纹完成签到 ,获得积分10
2秒前
3秒前
番茄爱喝粥完成签到,获得积分10
3秒前
CipherSage应助老王爱学习采纳,获得10
3秒前
Fa完成签到,获得积分10
3秒前
4秒前
kira完成签到,获得积分10
5秒前
舒服的茹嫣完成签到,获得积分20
5秒前
Stvn发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
7秒前
明理的天蓝完成签到,获得积分10
7秒前
咳咳发布了新的文献求助10
7秒前
木叶研完成签到,获得积分10
7秒前
无花果应助通~采纳,获得10
7秒前
8秒前
9秒前
周助发布了新的文献求助10
9秒前
伯赏秋白完成签到,获得积分10
9秒前
慕青应助sunzhiyu233采纳,获得10
9秒前
Sherwin完成签到,获得积分10
9秒前
羽毛完成签到,获得积分20
10秒前
xiongjian发布了新的文献求助10
10秒前
一方通行完成签到 ,获得积分10
10秒前
10秒前
monster0101完成签到 ,获得积分10
10秒前
11秒前
11秒前
12秒前
Stvn完成签到,获得积分20
12秒前
核桃发布了新的文献求助10
12秒前
跳跃的太阳完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740