根际
白三叶
雷彭斯
植物修复
生物
大块土
植物
生物修复
微生物
光合作用
土壤水分
细菌
生态学
遗传学
作者
Meiqi Mu,Zicheng Wang,Zirui Chen,Yuchen Wu,Wanting Nie,Siwen Zhao,Xiujie Yin,Xiaohua Teng
标识
DOI:10.1016/j.scitotenv.2023.167871
摘要
Trifolium repens L. (T. repens) is considered a potential phytoremediation species due to its large biomass and ability to accumulate and tolerate heavy metals. Lead (Pb) is an important heavy metal pollutant that can affect plant growth, photosynthesis, and enzyme activity. However, response mechanism of microorganisms in three root niches of metal tolerant plants to Pb is not completely understood. Therefore, in this study, a Pb poisoning model of T. repens was established with a Pb gradient (0, 1000 mg/kg, 2000 mg/kg, and 3000 mg/kg), and was used to evaluate growth and physiological responses, as well as enrichment and transport coefficients in T. repens, and explore the characteristics of rhizosphere soil and microbial composition of three root niches. We found that Pb stress caused oxidative injury, and inhibited photosynthesis in T. repens. 16S rDNA sequencing analysis showed that the richness of microbial communities in bulk soil was higher than that in rhizosphere soil both under Pb stress and Pb nonstress conditions. Moreover, Proteobacteria was dominant phylum in bulk and rhizosphere soils, and Proteobacteria and Cyanobacteria were dominant phylum in endophytic bacteria. For the first time, we systematically investigated the response of Pb from bulk soil to plant leaves. The results showed that microbial interaction existed between bulk and rhizosphere soil. Rhizosphere bacterium Haliangium was positively correlated with urease activity and soil nutrients. Endophytic bacterium Pseudomonas was positively correlated with plant biomass and played an important role in Pb tolerance of T. repens. In addition, endophytic bacteria formed complex correlation networks with growth and physiological indexes of both root and shoot, moreover the network in root was more complicated. Taken together, Pb stress dose-dependently inhibited the growth of plants. This study provided a theoretical basis for the further development of microbial cooperation with plant remediation of heavy metal contaminated soil.
科研通智能强力驱动
Strongly Powered by AbleSci AI