Transferability evaluation of the deep potential model for simulating water-graphene confined system

可转让性 计算机科学 从头算 理论(学习稳定性) 分子动力学 范围(计算机科学) 人工智能 算法 机器学习 计算化学 化学 物理 量子力学 罗伊特 程序设计语言
作者
D. Liu,Jianzhong Wu,Diannan Lu
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:159 (4) 被引量:8
标识
DOI:10.1063/5.0153196
摘要

Machine learning potentials (MLPs) are poised to combine the accuracy of ab initio predictions with the computational efficiency of classical molecular dynamics (MD) simulation. While great progress has been made over the last two decades in developing MLPs, there is still much to be done to evaluate their model transferability and facilitate their development. In this work, we construct two deep potential (DP) models for liquid water near graphene surfaces, Model S and Model F, with the latter having more training data. A concurrent learning algorithm (DP-GEN) is adopted to explore the configurational space beyond the scope of conventional ab initio MD simulation. By examining the performance of Model S, we find that an accurate prediction of atomic force does not imply an accurate prediction of system energy. The deviation from the relative atomic force alone is insufficient to assess the accuracy of the DP models. Based on the performance of Model F, we propose that the relative magnitude of the model deviation and the corresponding root-mean-square error of the original test dataset, including energy and atomic force, can serve as an indicator for evaluating the accuracy of the model prediction for a given structure, which is particularly applicable for large systems where density functional theory calculations are infeasible. In addition to the prediction accuracy of the model described above, we also briefly discuss simulation stability and its relationship to the former. Both are important aspects in assessing the transferability of the MLP model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
四夕完成签到 ,获得积分10
刚刚
llt发布了新的文献求助10
刚刚
1秒前
JLAlpaca完成签到,获得积分10
2秒前
2秒前
桐桐应助霸气的小熊猫采纳,获得10
2秒前
庄周完成签到 ,获得积分10
4秒前
单薄井完成签到,获得积分10
4秒前
源源完成签到 ,获得积分10
5秒前
害羞外套发布了新的文献求助10
6秒前
6秒前
6秒前
程程发布了新的文献求助10
7秒前
充电宝应助一路向南采纳,获得10
7秒前
9秒前
科研小白完成签到 ,获得积分10
9秒前
浮游应助emilia采纳,获得10
9秒前
10秒前
浮游应助Chara_kara采纳,获得10
10秒前
11秒前
hhgcc应助聪慧的如彤采纳,获得20
12秒前
酷波er应助Colinlau采纳,获得10
12秒前
Rina完成签到,获得积分10
13秒前
13秒前
机智的大侠完成签到 ,获得积分10
13秒前
13秒前
Cheng发布了新的文献求助10
14秒前
luckyblue发布了新的文献求助10
15秒前
Jasper应助tangtang采纳,获得10
15秒前
天天快乐应助芬达采纳,获得10
15秒前
zuoyanwin完成签到,获得积分10
16秒前
heyi发布了新的文献求助10
16秒前
16秒前
16秒前
xzzt完成签到 ,获得积分10
17秒前
积极盼山发布了新的文献求助10
17秒前
精明幻露完成签到,获得积分10
18秒前
励志小薛发布了新的文献求助10
18秒前
JLAlpaca发布了新的文献求助10
18秒前
利子完成签到 ,获得积分10
18秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5216056
求助须知:如何正确求助?哪些是违规求助? 4391027
关于积分的说明 13671418
捐赠科研通 4253032
什么是DOI,文献DOI怎么找? 2333551
邀请新用户注册赠送积分活动 1331132
关于科研通互助平台的介绍 1284932