Transferability evaluation of the deep potential model for simulating water-graphene confined system

可转让性 计算机科学 从头算 理论(学习稳定性) 分子动力学 范围(计算机科学) 人工智能 算法 机器学习 计算化学 化学 物理 量子力学 罗伊特 程序设计语言
作者
D. Liu,Jianzhong Wu,Diannan Lu
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:159 (4) 被引量:8
标识
DOI:10.1063/5.0153196
摘要

Machine learning potentials (MLPs) are poised to combine the accuracy of ab initio predictions with the computational efficiency of classical molecular dynamics (MD) simulation. While great progress has been made over the last two decades in developing MLPs, there is still much to be done to evaluate their model transferability and facilitate their development. In this work, we construct two deep potential (DP) models for liquid water near graphene surfaces, Model S and Model F, with the latter having more training data. A concurrent learning algorithm (DP-GEN) is adopted to explore the configurational space beyond the scope of conventional ab initio MD simulation. By examining the performance of Model S, we find that an accurate prediction of atomic force does not imply an accurate prediction of system energy. The deviation from the relative atomic force alone is insufficient to assess the accuracy of the DP models. Based on the performance of Model F, we propose that the relative magnitude of the model deviation and the corresponding root-mean-square error of the original test dataset, including energy and atomic force, can serve as an indicator for evaluating the accuracy of the model prediction for a given structure, which is particularly applicable for large systems where density functional theory calculations are infeasible. In addition to the prediction accuracy of the model described above, we also briefly discuss simulation stability and its relationship to the former. Both are important aspects in assessing the transferability of the MLP model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yayisheng发布了新的文献求助10
1秒前
3秒前
陈静静发布了新的文献求助10
3秒前
liuxinyu发布了新的文献求助10
3秒前
LHL发布了新的文献求助10
3秒前
4秒前
淡定元珊完成签到,获得积分10
4秒前
5秒前
今后应助雷霆爆爆凯采纳,获得10
5秒前
小蘑菇应助山苍梓采纳,获得10
5秒前
7秒前
qiu完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
Owen应助多摩川的烟花少年采纳,获得10
8秒前
12关闭了12文献求助
9秒前
qiucheng1227发布了新的文献求助10
9秒前
科研通AI6应助yayisheng采纳,获得10
9秒前
11秒前
11秒前
李牧发布了新的文献求助10
12秒前
12秒前
64658应助沧海一声笑采纳,获得10
13秒前
13秒前
浮游应助嘟噜采纳,获得10
13秒前
兴奋的若菱完成签到 ,获得积分10
13秒前
14秒前
dxm发布了新的文献求助10
14秒前
14秒前
量子星尘发布了新的文献求助30
15秒前
16秒前
16秒前
17秒前
林鑫璐发布了新的文献求助10
18秒前
18秒前
英吉利25发布了新的文献求助20
19秒前
叶郅晟发布了新的文献求助10
20秒前
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950360
求助须知:如何正确求助?哪些是违规求助? 4213390
关于积分的说明 13103546
捐赠科研通 3995055
什么是DOI,文献DOI怎么找? 2186753
邀请新用户注册赠送积分活动 1202024
关于科研通互助平台的介绍 1115355