Feature Entropy Adaptive Network for Weak Magnetic Signal Classification

模式识别(心理学) 特征选择 人工智能 磁异常 异常检测 熵(时间箭头) 计算机科学 特征(语言学) 特征提取 小波 数学 物理 地球物理学 语言学 哲学 量子力学
作者
Ruiping Liu,Qing Chang,Yaoli Wang,Lipo Wang
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/jsen.2023.3326138
摘要

Magnetic anomaly signals are composed of anomaly signal and the geomagnetic field. Due to the similarity in magnitude between these two types of signals and the difficulty in acquiring magnetic field data, distinguishing between them is challenging, and the available dataset is small. This paper aims to address the classification of weak magnetic signals with limited samples obtained from actual measurements, a novel neural network-based approach for magnetic anomaly classification is proposed. Firstly, the feature selection is performed on the fused magnetic field signal features. The measured magnetic signals are decomposed using the standard orthogonal basis functions (OBF), and the coefficients of the basis functions are utilized as magnetic moment features. The wavelet transform is employed to calculate the coefficients as the time-frequency features of the magnetic field data. Statistical features are extracted based on the characteristics of the magnetic anomaly data. Using the statistical feature mean as a benchmark, selection is conducted considering the characteristics of the feature dataset, resulting in improved classification results. Afterwards, a lightweight magnetic anomaly classification model, MAD_FA, was designed, resulting in an average reduction of 41.67% in training time. Focal Loss was employed as the loss function during training, leading to an improvement of 3.86% in classification accuracy. A Multi-Feature Adaptive Entropy Weighting(MFAEW) method is proposed to extract magnetic signal features, which adaptively determines feature weights and effectively utilizes the mutual information and complementarity between features. This approach accelerates network convergence and improves classification accuracy by 2.53%. Finally, a comparison was made between the MAD_FA model and classical signal classification models, and a series of ablation experiments were conducted to evaluate the model. The suggested technique performs well in the task of classifying weak magnetic signals, with a classification accuracy of 99.96%, an F1 score of 96.38%, and an AUC score of 99.12%. The higher classification accuracy and stronger robustness compared to the traditional methods demonstrate the potential application of the MAC_FA model in weak magnetic signal classification tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助QWE采纳,获得10
1秒前
DNA甲基转移酶完成签到,获得积分10
1秒前
项无春发布了新的文献求助30
1秒前
发生了什么树完成签到,获得积分10
1秒前
Thi发布了新的文献求助10
2秒前
2秒前
3秒前
4秒前
kiki发布了新的文献求助10
8秒前
suhua发布了新的文献求助10
9秒前
三脸茫然完成签到 ,获得积分10
9秒前
千冬完成签到,获得积分10
10秒前
久念发布了新的文献求助10
10秒前
10秒前
FreedomThh完成签到,获得积分10
14秒前
谨慎不二完成签到,获得积分10
14秒前
15秒前
17秒前
吱吱完成签到 ,获得积分10
17秒前
17秒前
17秒前
kiki完成签到,获得积分10
19秒前
JINWEIJIANG完成签到,获得积分10
19秒前
Lucas应助久念采纳,获得10
19秒前
SciGPT应助久念采纳,获得10
19秒前
成就猫咪完成签到,获得积分10
19秒前
lh发布了新的文献求助10
20秒前
21秒前
21秒前
冰中发布了新的文献求助10
21秒前
wanci应助自由的傲儿采纳,获得10
23秒前
思明发布了新的文献求助10
24秒前
禹平露发布了新的文献求助10
24秒前
24秒前
酷波er应助tkdzjr12345采纳,获得10
25秒前
逝水发布了新的文献求助10
27秒前
Herzliya发布了新的文献求助80
29秒前
30秒前
31秒前
32秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3163383
求助须知:如何正确求助?哪些是违规求助? 2814219
关于积分的说明 7903906
捐赠科研通 2473789
什么是DOI,文献DOI怎么找? 1317077
科研通“疑难数据库(出版商)”最低求助积分说明 631615
版权声明 602187