清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Comparison of ChatGPT and Fine-Tuned Open Pre-Trained Transformers (OPT) Against Widely Used Sentiment Analysis Tools: Sentiment Analysis of COVID-19 Survey Data

情绪分析 计算机科学 社会化媒体 背景(考古学) 数据科学 判决 2019年冠状病毒病(COVID-19) 人工智能 数据挖掘 万维网 医学 生物 病理 古生物学 传染病(医学专业) 疾病
作者
Juan Antonio Lossio-Ventura,Rachel Weger,Angela Y. Lee,Emily P. Guinee,Joyce Y. Chung,Lauren Y. Atlas,Eleni Linos,Francisco Pereira
出处
期刊:JMIR mental health [JMIR Publications Inc.]
卷期号:11: e50150-e50150 被引量:21
标识
DOI:10.2196/50150
摘要

Background Health care providers and health-related researchers face significant challenges when applying sentiment analysis tools to health-related free-text survey data. Most state-of-the-art applications were developed in domains such as social media, and their performance in the health care context remains relatively unknown. Moreover, existing studies indicate that these tools often lack accuracy and produce inconsistent results. Objective This study aims to address the lack of comparative analysis on sentiment analysis tools applied to health-related free-text survey data in the context of COVID-19. The objective was to automatically predict sentence sentiment for 2 independent COVID-19 survey data sets from the National Institutes of Health and Stanford University. Methods Gold standard labels were created for a subset of each data set using a panel of human raters. We compared 8 state-of-the-art sentiment analysis tools on both data sets to evaluate variability and disagreement across tools. In addition, few-shot learning was explored by fine-tuning Open Pre-Trained Transformers (OPT; a large language model [LLM] with publicly available weights) using a small annotated subset and zero-shot learning using ChatGPT (an LLM without available weights). Results The comparison of sentiment analysis tools revealed high variability and disagreement across the evaluated tools when applied to health-related survey data. OPT and ChatGPT demonstrated superior performance, outperforming all other sentiment analysis tools. Moreover, ChatGPT outperformed OPT, exhibited higher accuracy by 6% and higher F-measure by 4% to 7%. Conclusions This study demonstrates the effectiveness of LLMs, particularly the few-shot learning and zero-shot learning approaches, in the sentiment analysis of health-related survey data. These results have implications for saving human labor and improving efficiency in sentiment analysis tasks, contributing to advancements in the field of automated sentiment analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
开朗盼山发布了新的文献求助10
8秒前
37秒前
lovelife完成签到,获得积分10
1分钟前
1分钟前
风中鲂发布了新的文献求助10
1分钟前
紫熊发布了新的文献求助10
2分钟前
2分钟前
3分钟前
灰灰12138完成签到,获得积分10
3分钟前
风中鲂发布了新的文献求助10
3分钟前
橘子味的北冰洋完成签到 ,获得积分10
3分钟前
草木完成签到,获得积分10
3分钟前
4分钟前
4分钟前
SW发布了新的文献求助10
4分钟前
SW完成签到,获得积分10
5分钟前
5分钟前
沙海沉戈完成签到,获得积分0
5分钟前
5分钟前
Ec_w完成签到 ,获得积分10
5分钟前
ppppppp_76完成签到 ,获得积分10
6分钟前
活力的纸飞机完成签到,获得积分10
6分钟前
孟祥飞完成签到,获得积分10
6分钟前
6分钟前
Sean完成签到,获得积分10
7分钟前
Owen应助neversay4ever采纳,获得10
7分钟前
7分钟前
无花果应助科研通管家采纳,获得10
7分钟前
无花果应助科研通管家采纳,获得20
7分钟前
开心每一天完成签到 ,获得积分10
8分钟前
8分钟前
青出于蓝蔡完成签到,获得积分10
8分钟前
Jenny发布了新的文献求助10
8分钟前
8分钟前
彭于晏应助Jenny采纳,获得10
8分钟前
Jenny完成签到,获得积分10
8分钟前
9分钟前
muriel完成签到,获得积分10
9分钟前
10分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Generative AI in Higher Education 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3356887
求助须知:如何正确求助?哪些是违规求助? 2980470
关于积分的说明 8694481
捐赠科研通 2662185
什么是DOI,文献DOI怎么找? 1457626
科研通“疑难数据库(出版商)”最低求助积分说明 674843
邀请新用户注册赠送积分活动 665789