计算机科学
生物网络
可扩展性
加权
数据集成
人工智能
系统生物学
功能(生物学)
图形
生物学数据
基因调控网络
卷积神经网络
机器学习
理论计算机科学
计算生物学
数据挖掘
基因
生物
生物信息学
数据库
进化生物学
放射科
医学
基因表达
生物化学
作者
Duncan T. Forster,Sheena C. Li,Yoko Yashiroda,Mami Yoshimura,Li Z,Luis Alberto Vega Isuhuaylas,Kaori Itto‐Nakama,Daisuke Yamanaka,Yoshikazu Ohya,Hiroyuki Osada,Bo Wang,Gary D. Bader,Charles Boone
出处
期刊:Nature Methods
[Springer Nature]
日期:2022-10-01
卷期号:19 (10): 1250-1261
被引量:19
标识
DOI:10.1038/s41592-022-01616-x
摘要
Biological networks constructed from varied data can be used to map cellular function, but each data type has limitations. Network integration promises to address these limitations by combining and automatically weighting input information to obtain a more accurate and comprehensive representation of the underlying biology. We developed a deep learning-based network integration algorithm that incorporates a graph convolutional network framework. Our method, BIONIC (Biological Network Integration using Convolutions), learns features that contain substantially more functional information compared to existing approaches. BIONIC has unsupervised and semisupervised learning modes, making use of available gene function annotations. BIONIC is scalable in both size and quantity of the input networks, making it feasible to integrate numerous networks on the scale of the human genome. To demonstrate the use of BIONIC in identifying new biology, we predicted and experimentally validated essential gene chemical-genetic interactions from nonessential gene profiles in yeast.
科研通智能强力驱动
Strongly Powered by AbleSci AI