亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

BIONIC: biological network integration using convolutions

计算机科学 生物网络 可扩展性 加权 数据集成 人工智能 系统生物学 功能(生物学) 深度学习 图形 生物学数据 机器学习 理论计算机科学 计算生物学 数据挖掘 生物 生物信息学 放射科 进化生物学 数据库 医学
作者
Duncan T. Forster,Sheena C. Li,Yoko Yashiroda,Mami Yoshimura,Zhijian Li,Luis Alberto Vega Isuhuaylas,Kaori Itto‐Nakama,Daisuke Yamanaka,Yoshikazu Ohya,Hiroyuki Osada,Bo Wang,Gary D. Bader,Charles Boone
出处
期刊:Nature Methods [Springer Nature]
卷期号:19 (10): 1250-1261 被引量:42
标识
DOI:10.1038/s41592-022-01616-x
摘要

Biological networks constructed from varied data can be used to map cellular function, but each data type has limitations. Network integration promises to address these limitations by combining and automatically weighting input information to obtain a more accurate and comprehensive representation of the underlying biology. We developed a deep learning-based network integration algorithm that incorporates a graph convolutional network framework. Our method, BIONIC (Biological Network Integration using Convolutions), learns features that contain substantially more functional information compared to existing approaches. BIONIC has unsupervised and semisupervised learning modes, making use of available gene function annotations. BIONIC is scalable in both size and quantity of the input networks, making it feasible to integrate numerous networks on the scale of the human genome. To demonstrate the use of BIONIC in identifying new biology, we predicted and experimentally validated essential gene chemical-genetic interactions from nonessential gene profiles in yeast.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
meeteryu完成签到,获得积分10
3秒前
Orange应助yao采纳,获得10
10秒前
caspar完成签到,获得积分10
11秒前
李爱国应助科研通管家采纳,获得10
20秒前
ceeray23应助科研通管家采纳,获得10
20秒前
33秒前
小高想去浙大读博完成签到 ,获得积分10
34秒前
yao发布了新的文献求助10
36秒前
47秒前
yao完成签到,获得积分10
48秒前
六六完成签到 ,获得积分10
48秒前
1分钟前
嘻嘻完成签到,获得积分10
1分钟前
1分钟前
1分钟前
jin666发布了新的文献求助10
1分钟前
Criminology34举报朝雨春求助涉嫌违规
1分钟前
研友_VZG7GZ应助lawang采纳,获得10
1分钟前
2分钟前
迷茫的一代完成签到,获得积分10
2分钟前
jin666完成签到,获得积分10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
小蘑菇应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
Criminology34举报清泠求助涉嫌违规
2分钟前
2分钟前
2分钟前
小A同学发布了新的文献求助10
2分钟前
雪白的青柏完成签到,获得积分10
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
小A同学完成签到,获得积分10
3分钟前
小蘑菇应助靓丽的魔镜采纳,获得10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650979
求助须知:如何正确求助?哪些是违规求助? 4782454
关于积分的说明 15052860
捐赠科研通 4809757
什么是DOI,文献DOI怎么找? 2572566
邀请新用户注册赠送积分活动 1528583
关于科研通互助平台的介绍 1487585