Predictive structure building in language comprehension: a large sample study on incremental licensing and parallelism

解析 计算机科学 自然语言处理 短语 人工智能 短语结构规则 平行性(语法) 构造(python库) 标点符号 理解力 语言学 生成语法 程序设计语言 哲学 并行计算
作者
Hiroki Fujita
出处
期刊:Cognitive Processing [Springer Nature]
卷期号:24 (2): 301-311 被引量:4
标识
DOI:10.1007/s10339-023-01130-8
摘要

In online language comprehension, the parser incrementally builds hierarchical syntactic structures. The predictive nature of this structure-building process has been the subject of extensive debate. A previous study observed that when a wh-phrase indicates parallelism between the upcoming wh-clause and a preceding clause (e.g., John told some stories, but we couldn't remember which stories…), the parser predictively constructs the wh-clause. This observation demonstrates predictive structure building. However, the study also suggests that the parser does not make a prediction when the wh-phrase indicates that parallelism does not hold (e.g., John told some stories … with which stories…), a potential limit to the prediction of syntactic structures. Crucially, these findings are controversial because the study did not observe processing difficulty when disambiguating input indicated that the predicted continuation was inconsistent with the globally grammatical structure (garden-path effects). The controversial results may be due to a lack of statistical power. Therefore, the present study conducted a large-scale replication study (324 participants and 24 sets of materials). The results revealed that the parser predicts the clausal structure, irrespective of the type of wh-phrase. There was also evidence of garden-path effects, supporting the finding that the parser makes a prediction. These observations suggest that the prediction algorithm inherent in the human parser is more powerful than assumed by the previous study and that the parser attempts to construct globally grammatical structures during revision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寒江雪应助AAA采纳,获得10
刚刚
lele发布了新的文献求助10
1秒前
顾矜应助oasissmz采纳,获得10
1秒前
Lin发布了新的文献求助10
2秒前
小小完成签到,获得积分10
2秒前
来碗老友粉不要粉完成签到,获得积分10
3秒前
4秒前
4秒前
传奇3应助TheDay采纳,获得10
5秒前
今后应助TheDay采纳,获得10
5秒前
酷波er应助TheDay采纳,获得10
5秒前
充电宝应助TheDay采纳,获得10
5秒前
5秒前
6秒前
大模型应助lele采纳,获得10
7秒前
可爱的函函应助白菜包子采纳,获得10
7秒前
oasissmz完成签到,获得积分10
8秒前
katrinagui完成签到,获得积分20
8秒前
9秒前
wzzf发布了新的文献求助10
9秒前
cy发布了新的文献求助10
9秒前
10秒前
CodeCraft应助炙热的雪糕采纳,获得10
10秒前
冷酷的小甜瓜完成签到,获得积分20
10秒前
慕青应助大白采纳,获得10
11秒前
Lin完成签到,获得积分10
11秒前
肖肖乐完成签到,获得积分20
13秒前
14秒前
14秒前
wangnn发布了新的文献求助20
14秒前
15秒前
cy完成签到,获得积分20
15秒前
15秒前
酷波er应助wzzf采纳,获得10
16秒前
16秒前
16秒前
JamesPei应助zz采纳,获得10
16秒前
笑点解析应助zam采纳,获得10
17秒前
肖肖乐发布了新的文献求助50
17秒前
赘婿应助5251采纳,获得10
17秒前
高分求助中
Genetics: From Genes to Genomes 3000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3475278
求助须知:如何正确求助?哪些是违规求助? 3067370
关于积分的说明 9103709
捐赠科研通 2758761
什么是DOI,文献DOI怎么找? 1513790
邀请新用户注册赠送积分活动 699798
科研通“疑难数据库(出版商)”最低求助积分说明 699160