Attention Mask R‐CNN with edge refinement algorithm for identifying circulating genetically abnormal cells

荧光原位杂交 卷积神经网络 人工智能 分割 计算机科学 模式识别(心理学) 噪音(视频) 生物 基因 遗传学 染色体 图像(数学)
作者
Xu Xu,Congsheng Li,Xianjun Fan,Xinjie Lan,Xing Lü,Xin Ye,Tongning Wu
出处
期刊:Cytometry Part A [Wiley]
卷期号:103 (3): 227-239 被引量:24
标识
DOI:10.1002/cyto.a.24682
摘要

Recent studies have suggested that circulating tumor cells with abnormalities in gene copy numbers in mononuclear cell-enriched peripheral blood samples, such as circulating genetically abnormal cells (CACs), can be used as a non-invasive tool to detect patients with benign pulmonary nodules. These cells are identified through fluorescence signals counting by using 4-color fluorescence in situ hybridization (FISH) technology that exhibits high stability, sensitivity, and specificity. When FISH data are analyzed, the overlapping cells and fluorescence noise is a great challenge for identifying of CACs, thereby seriously affecting the efficiency of clinical diagnosis. To address this problem, in this study, we proposed an end-to-end FISH-based method (CACNET) for CAC identification. CACNET achieved nuclear segmentation and counted 4-color staining signals through improved Mask region-based convolutional neural network (R-CNN), followed by cell category (normal cell, deletion cell, gain cell, or CAC) according to pathological criteria. Firstly, the segmentation accuracy of overlapping nuclei was improved by adding an edge constraint head during training. Then, the interference of fluorescence noise was reduced by fusing non-local module to reconstruct the feature extraction network of Mask R-CNN. We trained and tested the proposed model on a dataset comprising 700 frames with 58,083 nuclei. The Accuracy, Sensitivity, and Specificity (overall performance metric for the algorithm) of CAC identification with CACNET were 94.06%, 92.1%, and 99.8%, respectively. Moreover, the developed method exhibited approximately identification speed of approximately 0.22 s per frames. The results showed that the proposed method outperformed the existing CAC identification methods, making it a promising approach for early screening of lung cancer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nanfeng完成签到 ,获得积分10
3秒前
5秒前
8秒前
金光一闪发布了新的文献求助10
12秒前
狼来了aas发布了新的文献求助10
14秒前
rumengzhuo完成签到,获得积分10
16秒前
gyx完成签到 ,获得积分10
19秒前
金光一闪完成签到,获得积分10
19秒前
二十八完成签到 ,获得积分10
31秒前
zx完成签到 ,获得积分10
33秒前
彩色的芷容完成签到 ,获得积分10
33秒前
乐观的星月完成签到 ,获得积分10
37秒前
eternal_dreams完成签到 ,获得积分10
41秒前
西安浴日光能赵炜完成签到,获得积分10
56秒前
vagabond完成签到 ,获得积分10
56秒前
59秒前
XQ完成签到,获得积分10
1分钟前
Wang发布了新的文献求助10
1分钟前
liars完成签到 ,获得积分10
1分钟前
juliar完成签到 ,获得积分10
1分钟前
迅速千愁完成签到 ,获得积分10
1分钟前
fawr完成签到 ,获得积分10
1分钟前
一颗西柚完成签到 ,获得积分10
1分钟前
唐唐完成签到,获得积分10
1分钟前
strama完成签到,获得积分10
1分钟前
苏菲完成签到 ,获得积分10
1分钟前
酷波er应助科研通管家采纳,获得10
1分钟前
Sally完成签到 ,获得积分10
1分钟前
阳炎完成签到,获得积分10
1分钟前
欣忆完成签到 ,获得积分10
1分钟前
共享精神应助hipig采纳,获得10
1分钟前
Tina完成签到 ,获得积分10
2分钟前
现代的紫霜完成签到,获得积分10
2分钟前
快去爬山完成签到 ,获得积分10
2分钟前
东方越彬发布了新的文献求助10
2分钟前
杪夏二八完成签到 ,获得积分10
2分钟前
咖啡味椰果完成签到 ,获得积分10
2分钟前
2分钟前
满满的都是橙汁完成签到,获得积分10
2分钟前
Axs完成签到,获得积分10
2分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3571332
求助须知:如何正确求助?哪些是违规求助? 3141926
关于积分的说明 9444874
捐赠科研通 2843331
什么是DOI,文献DOI怎么找? 1562830
邀请新用户注册赠送积分活动 731326
科研通“疑难数据库(出版商)”最低求助积分说明 718524