亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An adaptive differential evolution algorithm based on belief space and generalized opposition-based learning for resource allocation

渡线 数学优化 计算机科学 差异进化 资源配置 局部最优 最优化问题 数学 人工智能 计算机网络
作者
Wu Deng,Hongcheng Ni,Yi Liu,Huiling Chen,Huimin Zhao
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:127: 109419-109419 被引量:129
标识
DOI:10.1016/j.asoc.2022.109419
摘要

Differential evolution (DE) algorithm is prone to premature convergence and local optimization in solving complex optimization problems. In order to solve these problems, the belief space strategy, generalized opposition-based learning strategy and parameter adaptive strategy are introduced into DE to propose an improved adaptive DE algorithm, namely ACDE/F in this paper. In the ACDE/F, the idea of cultural algorithm and different mutation strategies are introduced into belief space to balance the global exploration ability and local optimization ability. A generalized opposition-based learning strategy is designed to improve the convergence speed of local optimization and increase the population diversity. A parameter adaptive adjustment strategy is developed to reasonably adjust the mutation factor and crossover factor to avoid to fall into local optimum. In order to test and verify the optimization performance of the ACDE/F, the unimodal functions and multimodal functions from CEC 2005 and CEC 2017 are selected in here. The experiment results show that the ACDE/F has better optimization performance than the DE with different strategies, WMSDE, DE2/F, GOAL-RNADE and DE/best/1. In addition, the actual gate allocation problem is selected to verify the practical application ability of the ACDE/F. The ACDE/F obtains the maximum allocation rate and average allocation rate of 98% and 96.8%, respectively. Therefore, the experimental results show that the ACDE/F can effectively solve the gate allocation problem and obtain ideal gate allocation results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
5秒前
8秒前
余念安完成签到 ,获得积分10
9秒前
9秒前
量子星尘发布了新的文献求助10
11秒前
zxcv22100发布了新的文献求助10
14秒前
17秒前
life完成签到 ,获得积分10
18秒前
19秒前
何三岁发布了新的文献求助10
22秒前
olekravchenko发布了新的文献求助30
23秒前
24秒前
24秒前
25秒前
FashionBoy应助何三岁采纳,获得10
26秒前
爆米花应助科研通管家采纳,获得10
29秒前
量子星尘发布了新的文献求助10
32秒前
何三岁完成签到,获得积分10
32秒前
33秒前
peng完成签到 ,获得积分10
38秒前
量子星尘发布了新的文献求助10
38秒前
38秒前
CipherSage应助DullElm采纳,获得10
40秒前
41秒前
Grayball应助chem-w采纳,获得10
43秒前
43秒前
LDD发布了新的文献求助10
46秒前
47秒前
VuuVuu发布了新的文献求助10
49秒前
51秒前
量子星尘发布了新的文献求助10
51秒前
52秒前
53秒前
杰帅完成签到,获得积分10
53秒前
DullElm发布了新的文献求助10
57秒前
57秒前
1分钟前
DullElm完成签到,获得积分10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3660939
求助须知:如何正确求助?哪些是违规求助? 3222150
关于积分的说明 9743733
捐赠科研通 2931683
什么是DOI,文献DOI怎么找? 1605151
邀请新用户注册赠送积分活动 757705
科研通“疑难数据库(出版商)”最低求助积分说明 734462