An adaptive differential evolution algorithm based on belief space and generalized opposition-based learning for resource allocation

渡线 数学优化 计算机科学 差异进化 资源配置 局部最优 最优化问题 数学 人工智能 计算机网络
作者
Wu Deng,Hongcheng Ni,Yi Liu,Huiling Chen,Huimin Zhao
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:127: 109419-109419 被引量:103
标识
DOI:10.1016/j.asoc.2022.109419
摘要

Differential evolution (DE) algorithm is prone to premature convergence and local optimization in solving complex optimization problems. In order to solve these problems, the belief space strategy, generalized opposition-based learning strategy and parameter adaptive strategy are introduced into DE to propose an improved adaptive DE algorithm, namely ACDE/F in this paper. In the ACDE/F, the idea of cultural algorithm and different mutation strategies are introduced into belief space to balance the global exploration ability and local optimization ability. A generalized opposition-based learning strategy is designed to improve the convergence speed of local optimization and increase the population diversity. A parameter adaptive adjustment strategy is developed to reasonably adjust the mutation factor and crossover factor to avoid to fall into local optimum. In order to test and verify the optimization performance of the ACDE/F, the unimodal functions and multimodal functions from CEC 2005 and CEC 2017 are selected in here. The experiment results show that the ACDE/F has better optimization performance than the DE with different strategies, WMSDE, DE2/F, GOAL-RNADE and DE/best/1. In addition, the actual gate allocation problem is selected to verify the practical application ability of the ACDE/F. The ACDE/F obtains the maximum allocation rate and average allocation rate of 98% and 96.8%, respectively. Therefore, the experimental results show that the ACDE/F can effectively solve the gate allocation problem and obtain ideal gate allocation results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
4秒前
善学以致用应助简qiu采纳,获得10
5秒前
可耐的海豚完成签到 ,获得积分10
6秒前
赘婿应助快乐再出发采纳,获得10
6秒前
852应助披萨红采纳,获得10
7秒前
田様应助彦嘉采纳,获得30
7秒前
其实完成签到,获得积分20
8秒前
生动的水池完成签到,获得积分10
8秒前
FSF完成签到,获得积分10
9秒前
9秒前
10秒前
11秒前
11秒前
曾经的背包完成签到 ,获得积分20
12秒前
Fox完成签到,获得积分0
12秒前
12秒前
13秒前
想不明白完成签到,获得积分20
13秒前
13秒前
在水一方应助其实采纳,获得10
14秒前
15秒前
15秒前
徐昊雯发布了新的文献求助10
15秒前
JamesPei应助猇会不会采纳,获得10
15秒前
北冥有鱼发布了新的文献求助10
17秒前
Lyu发布了新的文献求助10
17秒前
orixero应助琪哒采纳,获得10
18秒前
18秒前
18秒前
脑洞疼应助曾经的背包采纳,获得10
19秒前
19秒前
向往星空完成签到,获得积分20
20秒前
www发布了新的文献求助10
21秒前
21秒前
香菜发布了新的文献求助10
22秒前
22秒前
烟火完成签到,获得积分10
22秒前
25秒前
简qiu发布了新的文献求助10
25秒前
高分求助中
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3218081
求助须知:如何正确求助?哪些是违规求助? 2867382
关于积分的说明 8156036
捐赠科研通 2534277
什么是DOI,文献DOI怎么找? 1366865
科研通“疑难数据库(出版商)”最低求助积分说明 644866
邀请新用户注册赠送积分活动 617922