已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

EARR: Using rules to enhance the embedding of knowledge graph

计算机科学 知识图 嵌入 图形 可扩展性 人工智能 理论计算机科学 机器学习 数据挖掘 数据库
作者
Jin Li,J.Y. Xiang,Jianhua Cheng
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:232: 120831-120831 被引量:6
标识
DOI:10.1016/j.eswa.2023.120831
摘要

Knowledge graphs have been receiving increasing attention from researchers. However, most of these graphs are incomplete, leading to the rise of knowledge graph completion as a prominent task. The goal of knowledge graph completion is to find missing relations in a knowledge graph. Knowledge graph embedding represents the entities and relations in a low-dimensional embedding space, simplifying operations and allowing for integration with knowledge graph completion tasks. Several popular embedding models, such as TransE, TransH, TransR, TuckER, RotatE, and others have achieved impressive results on knowledge graph completion tasks. However, most of these methods do not incorporate background knowledge that could enhance the quality of knowledge embedding. Logic rules are adaptable and scalable, which can enrich background knowledge, and separating the attributes of entities can improve the relevance of relations and facilitate the accuracy of logic rule extraction. Thus, we propose a novel method, named Entity-Attribute-Relation-Rule (EARR), which separates attributes from entities and uses logic rules to extend the dataset, improving the accuracy of knowledge graph completion tasks. We define a total of six rules in this paper, including Rule 1-3, Rule 5, and Rule 6 for entities, and Rule 4 for entities and attributes. We evaluate our method based on the task of link prediction through two kinds of experiments. In the basic experiment, we compare our method with three benchmark models, namely, TransE, TransH, and TransR. In the experiment with different size datasets, FB24K and CoDEx, we evaluate our method on different size datasets with different models, including TransE, TuckER, and RotatE. The experimental results indicate that EARR can improve the quality of knowledge graph embedding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
隐形曼青应助踏实的寒安采纳,获得10
1秒前
7907完成签到,获得积分10
4秒前
Lufthansa发布了新的文献求助10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
俗人应助科研通管家采纳,获得10
4秒前
拉长的灵阳完成签到,获得积分10
4秒前
杳鸢应助科研通管家采纳,获得10
5秒前
HEIKU应助科研通管家采纳,获得10
5秒前
HEIKU应助科研通管家采纳,获得10
5秒前
HEIKU应助科研通管家采纳,获得10
5秒前
Jasper应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
天下无敌完成签到 ,获得积分10
5秒前
6秒前
jzy完成签到,获得积分10
6秒前
8秒前
无限的函发布了新的文献求助10
9秒前
10秒前
10秒前
Lufthansa完成签到,获得积分20
11秒前
jzy发布了新的文献求助10
13秒前
青岛彭于晏完成签到 ,获得积分10
14秒前
华仔应助赵暖橙采纳,获得10
15秒前
沉静一刀完成签到 ,获得积分10
16秒前
shooin完成签到,获得积分10
17秒前
YBR完成签到 ,获得积分10
18秒前
卢国强完成签到 ,获得积分10
18秒前
叶雨思空完成签到 ,获得积分10
18秒前
CodeCraft应助Lufthansa采纳,获得10
20秒前
kento完成签到,获得积分0
21秒前
22秒前
zho驳回了三新荞应助
24秒前
怀玉完成签到 ,获得积分10
26秒前
酒醉的蝴蝶完成签到 ,获得积分10
27秒前
沉小墨完成签到 ,获得积分20
27秒前
27秒前
张宝完成签到,获得积分10
29秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3238656
求助须知:如何正确求助?哪些是违规求助? 2884064
关于积分的说明 8232343
捐赠科研通 2552071
什么是DOI,文献DOI怎么找? 1380475
科研通“疑难数据库(出版商)”最低求助积分说明 649011
邀请新用户注册赠送积分活动 624725