Normal Tissue Toxicity Prediction: Clinical Translation on the Horizon

医学 放射治疗 毒性 临床试验 肿瘤科 疾病 癌症 前列腺癌 重症监护医学 内科学 生物信息学 生物
作者
Sarah L. Kerns,William A. Hall,Brian Marples,Catharine West
出处
期刊:Seminars in Radiation Oncology [Elsevier]
卷期号:33 (3): 307-316
标识
DOI:10.1016/j.semradonc.2023.03.010
摘要

Improvements in radiotherapy delivery have enabled higher therapeutic doses and improved efficacy, contributing to the growing number of long-term cancer survivors. These survivors are at risk of developing late toxicity from radiotherapy, and the inability to predict who is most susceptible results in substantial impact on quality of life and limits further curative dose escalation. A predictive assay or algorithm for normal tissue radiosensitivity would allow more personalized treatment planning, reducing the burden of late toxicity, and improving the therapeutic index. Progress over the last 10 years has shown that the etiology of late clinical radiotoxicity is multifactorial and informs development of predictive models that combine information on treatment (eg, dose, adjuvant treatment), demographic and health behaviors (eg, smoking, age), co-morbidities (eg, diabetes, collagen vascular disease), and biology (eg, genetics, ex vivo functional assays). AI has emerged as a useful tool and is facilitating extraction of signal from large datasets and development of high-level multivariable models. Some models are progressing to evaluation in clinical trials, and we anticipate adoption of these into the clinical workflow in the coming years. Information on predicted risk of toxicity could prompt modification of radiotherapy delivery (eg, use of protons, altered dose and/or fractionation, reduced volume) or, in rare instances of very high predicted risk, avoidance of radiotherapy. Risk information can also be used to assist treatment decision-making for cancers where efficacy of radiotherapy is equivalent to other treatments (eg, low-risk prostate cancer) and can be used to guide follow-up screening in instances where radiotherapy is still the best choice to maximize tumor control probability. Here, we review promising predictive assays for clinical radiotoxicity and highlight studies that are progressing to develop an evidence base for clinical utility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Zoe完成签到,获得积分10
1秒前
3秒前
zyx发布了新的文献求助10
4秒前
达da发布了新的文献求助10
4秒前
在水一方应助现实的南烟采纳,获得10
4秒前
guajiguaji完成签到,获得积分10
5秒前
NexusExplorer应助雨季采纳,获得10
5秒前
黄淮二傻发布了新的文献求助10
6秒前
melon发布了新的文献求助10
7秒前
liu星雨完成签到,获得积分20
8秒前
不配.应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
思源应助科研通管家采纳,获得10
9秒前
9秒前
赘婿应助科研通管家采纳,获得10
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
wanci应助科研通管家采纳,获得10
9秒前
keke完成签到,获得积分10
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
不配.应助科研通管家采纳,获得10
10秒前
Hello应助科研通管家采纳,获得10
10秒前
小马甲应助科研通管家采纳,获得10
10秒前
10秒前
12秒前
CY发布了新的文献求助10
13秒前
秀丽的慕灵完成签到,获得积分10
13秒前
甄茗完成签到 ,获得积分10
14秒前
14秒前
16秒前
17秒前
17秒前
zoeyliu发布了新的文献求助10
17秒前
小安完成签到 ,获得积分10
19秒前
悦耳蜡烛完成签到,获得积分10
19秒前
可爱的函函应助左澄澄采纳,获得10
20秒前
汉堡包应助Ann采纳,获得30
20秒前
knightczt发布了新的文献求助10
20秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141967
求助须知:如何正确求助?哪些是违规求助? 2792954
关于积分的说明 7804609
捐赠科研通 2449278
什么是DOI,文献DOI怎么找? 1303129
科研通“疑难数据库(出版商)”最低求助积分说明 626796
版权声明 601291