Expression of genes encoding non-specific immunity, anti-oxidative status and aquaporins in β-glucan-fed golden mahseer (Tor putitora) juveniles under ammonia stress
生物
过氧化氢酶
氧化应激
生物化学
作者
Alexander Ciji,Priyanka H. Tripathi,Priyanka H. Tripathi,M. S. Akhtar
The study investigated the effects of dietary administration of β-glucan on aquaporins and antioxidative & immune gene expression in endangered golden mahseer, Tor putitora juveniles, exposed to ammonia stress. For that, fish were fed experimental diets having 0 (control/basal), 0.25, 0.5, and 0.75% β-d-glucan for five weeks and then exposed to ammonia (10 mgL-1 total ammonia nitrogen) for 96 h. Administration of β-glucan differentially influenced the mRNA expression of aquaporins, anti-oxidative, and immune genes in ammonia-exposed fish. For instance, the transcript abundance of catalase and glutathione-s-transferase in gill varied significantly among the treatment groups, with the lowest levels in 0.75% β-glucan fed groups. At the same time, their hepatic mRNA expression was similar. Congruently, transcript abundance of inducible nitric oxide synthase considerably decreased in the β-glucan fed ammonia-challenged fish. Conversely, the relative mRNA expression of various immune genes viz., major histocompatibility complex, immunoglobulin light chain, interleukin 1-beta, toll-like receptors (tlr4 and tlr5) and complement component 3 remained largely unchanged in ammonia-exposed mahseer juveniles that were fed with graded levels of β-glucan. On the other hand, a significantly lower transcript level of aquaporins 1a and 3a was noticed in the gill of glucan-fed fish compared to ammonia-exposed fish that received the basal diet. However, branchial aquaporin 3b remained unaltered. Altogether, this study showed that dietary intake of 0.75% β-glucan improved resistance to ammonia stress to a certain degree, probably through activating anti-oxidative system and reducing brachial ammonia uptake.