Multivariate Time Series Forecasting of Oil Production Based on Ensemble Deep Learning and Genetic Algorithm

多元统计 系列(地层学) 生产(经济) 时间序列 计算机科学 人工智能 遗传算法 集成学习 算法 石油生产 机器学习 计量经济学 数学 工程类 经济 石油工程 生物 宏观经济学 古生物学
作者
Ashraf Eskandar Al-Aghbari,Bernard Kok Bang Lee
标识
DOI:10.2139/ssrn.4460174
摘要

Forecasting oil production is a substantial task in the petroleum industry as it helps decision-makers optimize storage and distribution operations and plan resources more efficiently. However, traditional methods for forecasting oil production, such as Numerical Reservoir Simulation (NRS), can be challenging due to the substantial effort involved and the high uncertainty associated with the various types of data used. Alternative methods, such as analytical methods and Decline Curve Analysis (DCA), fail to accurately reflect the physics of the actual system or account for dynamic changes in oil production operations and conditions. Therefore, more efficient methods are needed. In this study, an ensemble deep learning model composed of a Temporal Convolutional Network (TCN) and Long Short-Term Memory (LSTM) has been proposed, and its hyperparameters were optimized with Genetic Algorithm (GA). The workflow of this study involved extensive preprocessing to ensure the quality and relevance of the input data. As a result, only the interaction terms of average choke size, on stream hours, and time, in addition to gas volume, were utilized in the model development. To verify the robustness of the proposed model, its predictive performance was compared with four other models: LSTM, TCN, GRU, and RNN, using a testing set. The GA-TCN-LSTM model proposed in this study demonstrated promising results, reducing residual variance and outperforming the reference models with an RMSE of 199.39, wMAPE of 5.13, MAE of 117.11, and  of 0.93. Moreover, the proposed model was established using only three consistently available variables with oil production. These input features covered various operating conditions, making the proposed model applicable to most conventional oil fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
前百年253完成签到,获得积分10
1秒前
2秒前
2秒前
叶永芬完成签到,获得积分10
2秒前
Sunflower发布了新的文献求助10
3秒前
上官若男应助wxy采纳,获得10
3秒前
3秒前
张羊羔完成签到,获得积分10
3秒前
xiangdemeilo完成签到,获得积分10
4秒前
CipherSage应助进取拼搏采纳,获得10
4秒前
桐桐应助鲸鱼采纳,获得10
4秒前
Lucas应助居选金采纳,获得10
4秒前
5秒前
5秒前
5秒前
Wang完成签到,获得积分10
6秒前
AnJaShua发布了新的文献求助10
6秒前
懵懂的南珍应助sota采纳,获得10
6秒前
Sunsky完成签到,获得积分10
6秒前
7秒前
ding应助安安采纳,获得10
8秒前
Kevin发布了新的文献求助10
8秒前
灰灰12138发布了新的文献求助10
9秒前
9秒前
诺贝尔完成签到,获得积分10
9秒前
xhxh5946发布了新的文献求助10
9秒前
10秒前
10秒前
电闪发布了新的文献求助10
10秒前
好嘞关注了科研通微信公众号
11秒前
顾矜应助大无畏采纳,获得10
12秒前
BSDL发布了新的文献求助10
12秒前
zzzzzk完成签到,获得积分10
12秒前
Bismarck发布了新的文献求助10
12秒前
12秒前
大个应助BK2008采纳,获得10
13秒前
涉几尘完成签到,获得积分20
13秒前
领导范儿应助科研小白采纳,获得10
13秒前
水何澹澹完成签到,获得积分0
15秒前
弎夜发布了新的文献求助10
16秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961892
求助须知:如何正确求助?哪些是违规求助? 3508143
关于积分的说明 11139862
捐赠科研通 3240824
什么是DOI,文献DOI怎么找? 1791076
邀请新用户注册赠送积分活动 872725
科研通“疑难数据库(出版商)”最低求助积分说明 803344