Multivariate Time Series Forecasting of Oil Production Based on Ensemble Deep Learning and Genetic Algorithm

多元统计 系列(地层学) 生产(经济) 时间序列 计算机科学 人工智能 遗传算法 集成学习 算法 石油生产 机器学习 计量经济学 数学 工程类 经济 石油工程 生物 宏观经济学 古生物学
作者
Ashraf Eskandar Al-Aghbari,Bernard Kok Bang Lee
标识
DOI:10.2139/ssrn.4460174
摘要

Forecasting oil production is a substantial task in the petroleum industry as it helps decision-makers optimize storage and distribution operations and plan resources more efficiently. However, traditional methods for forecasting oil production, such as Numerical Reservoir Simulation (NRS), can be challenging due to the substantial effort involved and the high uncertainty associated with the various types of data used. Alternative methods, such as analytical methods and Decline Curve Analysis (DCA), fail to accurately reflect the physics of the actual system or account for dynamic changes in oil production operations and conditions. Therefore, more efficient methods are needed. In this study, an ensemble deep learning model composed of a Temporal Convolutional Network (TCN) and Long Short-Term Memory (LSTM) has been proposed, and its hyperparameters were optimized with Genetic Algorithm (GA). The workflow of this study involved extensive preprocessing to ensure the quality and relevance of the input data. As a result, only the interaction terms of average choke size, on stream hours, and time, in addition to gas volume, were utilized in the model development. To verify the robustness of the proposed model, its predictive performance was compared with four other models: LSTM, TCN, GRU, and RNN, using a testing set. The GA-TCN-LSTM model proposed in this study demonstrated promising results, reducing residual variance and outperforming the reference models with an RMSE of 199.39, wMAPE of 5.13, MAE of 117.11, and  of 0.93. Moreover, the proposed model was established using only three consistently available variables with oil production. These input features covered various operating conditions, making the proposed model applicable to most conventional oil fields.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
无尽夏发布了新的文献求助10
刚刚
刚刚
刚刚
AN发布了新的文献求助10
刚刚
honey完成签到,获得积分20
刚刚
刚刚
orixero应助Pendulium采纳,获得10
1秒前
1秒前
复杂的忆灵完成签到,获得积分10
1秒前
1秒前
阮楷瑞发布了新的文献求助10
1秒前
1秒前
两只老虎爱跳舞完成签到,获得积分10
2秒前
薛定谔的猫完成签到,获得积分10
2秒前
易拉罐发布了新的文献求助10
2秒前
彩虹捕手发布了新的文献求助10
2秒前
星辰大海应助duoduo采纳,获得10
2秒前
体贴以筠完成签到 ,获得积分10
3秒前
Wu完成签到,获得积分10
3秒前
于特发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
4秒前
Yikepp完成签到,获得积分10
4秒前
5秒前
5秒前
小能猫发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
lizhuang完成签到 ,获得积分10
5秒前
6秒前
6秒前
bjjtdx1997发布了新的文献求助10
6秒前
6秒前
生动曼冬发布了新的文献求助10
6秒前
美丽的周发布了新的文献求助80
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5576558
求助须知:如何正确求助?哪些是违规求助? 4661927
关于积分的说明 14738788
捐赠科研通 4602503
什么是DOI,文献DOI怎么找? 2525869
邀请新用户注册赠送积分活动 1495750
关于科研通互助平台的介绍 1465414