亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multivariate Time Series Forecasting of Oil Production Based on Ensemble Deep Learning and Genetic Algorithm

多元统计 系列(地层学) 生产(经济) 时间序列 计算机科学 人工智能 遗传算法 集成学习 算法 石油生产 机器学习 计量经济学 数学 工程类 经济 石油工程 生物 宏观经济学 古生物学
作者
Ashraf Eskandar Al-Aghbari,Bernard Kok Bang Lee
标识
DOI:10.2139/ssrn.4460174
摘要

Forecasting oil production is a substantial task in the petroleum industry as it helps decision-makers optimize storage and distribution operations and plan resources more efficiently. However, traditional methods for forecasting oil production, such as Numerical Reservoir Simulation (NRS), can be challenging due to the substantial effort involved and the high uncertainty associated with the various types of data used. Alternative methods, such as analytical methods and Decline Curve Analysis (DCA), fail to accurately reflect the physics of the actual system or account for dynamic changes in oil production operations and conditions. Therefore, more efficient methods are needed. In this study, an ensemble deep learning model composed of a Temporal Convolutional Network (TCN) and Long Short-Term Memory (LSTM) has been proposed, and its hyperparameters were optimized with Genetic Algorithm (GA). The workflow of this study involved extensive preprocessing to ensure the quality and relevance of the input data. As a result, only the interaction terms of average choke size, on stream hours, and time, in addition to gas volume, were utilized in the model development. To verify the robustness of the proposed model, its predictive performance was compared with four other models: LSTM, TCN, GRU, and RNN, using a testing set. The GA-TCN-LSTM model proposed in this study demonstrated promising results, reducing residual variance and outperforming the reference models with an RMSE of 199.39, wMAPE of 5.13, MAE of 117.11, and  of 0.93. Moreover, the proposed model was established using only three consistently available variables with oil production. These input features covered various operating conditions, making the proposed model applicable to most conventional oil fields.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清枫有风完成签到 ,获得积分10
9秒前
13秒前
fantianhui完成签到 ,获得积分10
16秒前
LiShan完成签到 ,获得积分10
16秒前
wyx发布了新的文献求助10
19秒前
乐乐应助默默采纳,获得10
26秒前
26秒前
Jasper应助挺帅一男的采纳,获得10
27秒前
Bressanone完成签到,获得积分10
31秒前
biophilia发布了新的文献求助10
31秒前
啊z应助科研通管家采纳,获得10
33秒前
科研通AI6应助科研通管家采纳,获得10
33秒前
华仔应助科研通管家采纳,获得10
33秒前
上官若男应助科研通管家采纳,获得10
33秒前
34秒前
科研通AI6应助科研通管家采纳,获得10
34秒前
科研通AI6应助科研通管家采纳,获得10
34秒前
SciGPT应助科研通管家采纳,获得10
34秒前
瀚子完成签到,获得积分10
37秒前
38秒前
默默发布了新的文献求助10
39秒前
守一完成签到,获得积分10
39秒前
蓝莓小蛋糕完成签到 ,获得积分10
40秒前
43秒前
逆光完成签到 ,获得积分10
45秒前
51秒前
53秒前
Aurora发布了新的文献求助10
55秒前
江氏巨颏虎完成签到,获得积分10
57秒前
彭于晏应助ohhhhhoho采纳,获得10
57秒前
58秒前
Aurora完成签到,获得积分10
1分钟前
LONG发布了新的文献求助10
1分钟前
挺帅一男的完成签到,获得积分10
1分钟前
1分钟前
biophilia发布了新的文献求助10
1分钟前
谨慎的曼安完成签到 ,获得积分10
1分钟前
草莓发布了新的文献求助10
1分钟前
俊逸沛菡完成签到 ,获得积分10
1分钟前
咸鱼完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714199
求助须知:如何正确求助?哪些是违规求助? 5221497
关于积分的说明 15272903
捐赠科研通 4865707
什么是DOI,文献DOI怎么找? 2612304
邀请新用户注册赠送积分活动 1562442
关于科研通互助平台的介绍 1519639