亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multivariate Time Series Forecasting of Oil Production Based on Ensemble Deep Learning and Genetic Algorithm

多元统计 系列(地层学) 生产(经济) 时间序列 计算机科学 人工智能 遗传算法 集成学习 算法 石油生产 机器学习 计量经济学 数学 工程类 经济 石油工程 生物 宏观经济学 古生物学
作者
Ashraf Eskandar Al-Aghbari,Bernard Kok Bang Lee
标识
DOI:10.2139/ssrn.4460174
摘要

Forecasting oil production is a substantial task in the petroleum industry as it helps decision-makers optimize storage and distribution operations and plan resources more efficiently. However, traditional methods for forecasting oil production, such as Numerical Reservoir Simulation (NRS), can be challenging due to the substantial effort involved and the high uncertainty associated with the various types of data used. Alternative methods, such as analytical methods and Decline Curve Analysis (DCA), fail to accurately reflect the physics of the actual system or account for dynamic changes in oil production operations and conditions. Therefore, more efficient methods are needed. In this study, an ensemble deep learning model composed of a Temporal Convolutional Network (TCN) and Long Short-Term Memory (LSTM) has been proposed, and its hyperparameters were optimized with Genetic Algorithm (GA). The workflow of this study involved extensive preprocessing to ensure the quality and relevance of the input data. As a result, only the interaction terms of average choke size, on stream hours, and time, in addition to gas volume, were utilized in the model development. To verify the robustness of the proposed model, its predictive performance was compared with four other models: LSTM, TCN, GRU, and RNN, using a testing set. The GA-TCN-LSTM model proposed in this study demonstrated promising results, reducing residual variance and outperforming the reference models with an RMSE of 199.39, wMAPE of 5.13, MAE of 117.11, and  of 0.93. Moreover, the proposed model was established using only three consistently available variables with oil production. These input features covered various operating conditions, making the proposed model applicable to most conventional oil fields.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
桐桐应助科研通管家采纳,获得10
11秒前
15秒前
酷酷海豚完成签到,获得积分10
53秒前
OSASACB完成签到 ,获得积分10
59秒前
1分钟前
屈煜彬完成签到 ,获得积分10
1分钟前
orixero应助蔡6705采纳,获得10
1分钟前
1分钟前
1分钟前
蔡6705完成签到,获得积分10
1分钟前
蔡6705发布了新的文献求助10
1分钟前
白华苍松完成签到,获得积分10
2分钟前
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
研友_VZG7GZ应助白华苍松采纳,获得10
2分钟前
2分钟前
安详雅绿发布了新的文献求助30
2分钟前
连安阳发布了新的文献求助10
2分钟前
转转发布了新的文献求助10
2分钟前
安详雅绿完成签到,获得积分20
3分钟前
3分钟前
3分钟前
转转发布了新的文献求助50
3分钟前
于yu完成签到 ,获得积分10
3分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
转转发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
小蘑菇应助转转采纳,获得50
5分钟前
科研通AI6.1应助浪里白条采纳,获得10
5分钟前
5分钟前
转转发布了新的文献求助50
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5764316
求助须知:如何正确求助?哪些是违规求助? 5550096
关于积分的说明 15406091
捐赠科研通 4899552
什么是DOI,文献DOI怎么找? 2635769
邀请新用户注册赠送积分活动 1583921
关于科研通互助平台的介绍 1539095