Multivariate Time Series Forecasting of Oil Production Based on Ensemble Deep Learning and Genetic Algorithm

多元统计 系列(地层学) 生产(经济) 时间序列 计算机科学 人工智能 遗传算法 集成学习 算法 石油生产 机器学习 计量经济学 数学 工程类 经济 石油工程 生物 宏观经济学 古生物学
作者
Ashraf Eskandar Al-Aghbari,Bernard Kok Bang Lee
标识
DOI:10.2139/ssrn.4460174
摘要

Forecasting oil production is a substantial task in the petroleum industry as it helps decision-makers optimize storage and distribution operations and plan resources more efficiently. However, traditional methods for forecasting oil production, such as Numerical Reservoir Simulation (NRS), can be challenging due to the substantial effort involved and the high uncertainty associated with the various types of data used. Alternative methods, such as analytical methods and Decline Curve Analysis (DCA), fail to accurately reflect the physics of the actual system or account for dynamic changes in oil production operations and conditions. Therefore, more efficient methods are needed. In this study, an ensemble deep learning model composed of a Temporal Convolutional Network (TCN) and Long Short-Term Memory (LSTM) has been proposed, and its hyperparameters were optimized with Genetic Algorithm (GA). The workflow of this study involved extensive preprocessing to ensure the quality and relevance of the input data. As a result, only the interaction terms of average choke size, on stream hours, and time, in addition to gas volume, were utilized in the model development. To verify the robustness of the proposed model, its predictive performance was compared with four other models: LSTM, TCN, GRU, and RNN, using a testing set. The GA-TCN-LSTM model proposed in this study demonstrated promising results, reducing residual variance and outperforming the reference models with an RMSE of 199.39, wMAPE of 5.13, MAE of 117.11, and  of 0.93. Moreover, the proposed model was established using only three consistently available variables with oil production. These input features covered various operating conditions, making the proposed model applicable to most conventional oil fields.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助花海采纳,获得10
刚刚
川哥完成签到,获得积分10
1秒前
小蘑菇应助邢哥哥采纳,获得30
1秒前
2秒前
李安全完成签到,获得积分10
2秒前
严谨严谨严谨完成签到 ,获得积分10
4秒前
李大王完成签到 ,获得积分10
5秒前
5秒前
xiaorui完成签到,获得积分10
6秒前
6秒前
凳凳子完成签到,获得积分10
6秒前
sun完成签到,获得积分10
7秒前
CACT完成签到,获得积分10
8秒前
苽峰完成签到,获得积分10
8秒前
沈剑心发布了新的文献求助10
8秒前
Hello应助WT采纳,获得10
9秒前
王木木完成签到 ,获得积分10
9秒前
白色蒲公英完成签到,获得积分10
9秒前
昏睡的翩跹关注了科研通微信公众号
9秒前
乐可乐完成签到,获得积分10
10秒前
11秒前
仓促过客发布了新的文献求助10
12秒前
12秒前
ilk666完成签到,获得积分10
14秒前
14秒前
邢哥哥发布了新的文献求助30
14秒前
bigxianyu完成签到,获得积分10
14秒前
小雨完成签到,获得积分10
15秒前
不知所措的咪完成签到,获得积分10
16秒前
加加林发布了新的文献求助10
17秒前
KevinT应助yang采纳,获得30
17秒前
可爱半山完成签到 ,获得积分10
17秒前
酷波er应助o海边风o采纳,获得30
18秒前
18秒前
sui完成签到,获得积分10
19秒前
aaaaa发布了新的文献求助10
20秒前
呆鹅喵喵完成签到,获得积分10
24秒前
WY完成签到,获得积分10
24秒前
25秒前
Ammon完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5733271
求助须知:如何正确求助?哪些是违规求助? 5347662
关于积分的说明 15323495
捐赠科研通 4878407
什么是DOI,文献DOI怎么找? 2621220
邀请新用户注册赠送积分活动 1570329
关于科研通互助平台的介绍 1527224