Multivariate Time Series Forecasting of Oil Production Based on Ensemble Deep Learning and Genetic Algorithm

多元统计 系列(地层学) 生产(经济) 时间序列 计算机科学 人工智能 遗传算法 集成学习 算法 石油生产 机器学习 计量经济学 数学 工程类 经济 石油工程 生物 古生物学 宏观经济学
作者
Ashraf Eskandar Al-Aghbari,Bernard Kok Bang Lee
标识
DOI:10.2139/ssrn.4460174
摘要

Forecasting oil production is a substantial task in the petroleum industry as it helps decision-makers optimize storage and distribution operations and plan resources more efficiently. However, traditional methods for forecasting oil production, such as Numerical Reservoir Simulation (NRS), can be challenging due to the substantial effort involved and the high uncertainty associated with the various types of data used. Alternative methods, such as analytical methods and Decline Curve Analysis (DCA), fail to accurately reflect the physics of the actual system or account for dynamic changes in oil production operations and conditions. Therefore, more efficient methods are needed. In this study, an ensemble deep learning model composed of a Temporal Convolutional Network (TCN) and Long Short-Term Memory (LSTM) has been proposed, and its hyperparameters were optimized with Genetic Algorithm (GA). The workflow of this study involved extensive preprocessing to ensure the quality and relevance of the input data. As a result, only the interaction terms of average choke size, on stream hours, and time, in addition to gas volume, were utilized in the model development. To verify the robustness of the proposed model, its predictive performance was compared with four other models: LSTM, TCN, GRU, and RNN, using a testing set. The GA-TCN-LSTM model proposed in this study demonstrated promising results, reducing residual variance and outperforming the reference models with an RMSE of 199.39, wMAPE of 5.13, MAE of 117.11, and  of 0.93. Moreover, the proposed model was established using only three consistently available variables with oil production. These input features covered various operating conditions, making the proposed model applicable to most conventional oil fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助liuhong采纳,获得10
刚刚
乐观的眼睛完成签到,获得积分10
刚刚
xiguo发布了新的文献求助10
1秒前
1秒前
Wang发布了新的文献求助10
2秒前
CodeCraft应助任梓宁采纳,获得10
2秒前
more应助洛洛采纳,获得20
2秒前
沐浴清风发布了新的文献求助10
4秒前
fifteen发布了新的文献求助10
5秒前
羽6发布了新的文献求助10
6秒前
7秒前
桐桐应助张伟采纳,获得10
7秒前
hxl123发布了新的文献求助10
8秒前
9秒前
合适苗条发布了新的文献求助10
10秒前
11秒前
张伟完成签到,获得积分10
12秒前
俏皮火完成签到 ,获得积分10
13秒前
任梓宁发布了新的文献求助10
13秒前
13秒前
dsjacn完成签到 ,获得积分10
15秒前
ZX801发布了新的文献求助10
16秒前
17秒前
功夫完成签到,获得积分10
17秒前
yihoxu完成签到,获得积分20
17秒前
liuhong发布了新的文献求助10
17秒前
健康的幼荷完成签到,获得积分10
18秒前
机灵胡萝卜完成签到,获得积分20
18秒前
Ava应助沐浴清风采纳,获得10
19秒前
19秒前
19秒前
21秒前
21秒前
田様应助wsh采纳,获得10
24秒前
陈军发布了新的文献求助10
25秒前
gzf关闭了gzf文献求助
27秒前
29秒前
30秒前
30秒前
MHbb完成签到,获得积分10
31秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153496
求助须知:如何正确求助?哪些是违规求助? 2804706
关于积分的说明 7861097
捐赠科研通 2462651
什么是DOI,文献DOI怎么找? 1310893
科研通“疑难数据库(出版商)”最低求助积分说明 629416
版权声明 601809