亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Study of the mechanism of ultrasound-induced enhanced therapeutic effects of a chitosan-based nanoplatform

声动力疗法 药物输送 壳聚糖 纳米医学 细胞凋亡 癌症研究 癌细胞 纳米载体 生物物理学 材料科学 化学 癌症 纳米技术 医学 纳米颗粒 生物 生物化学 内科学
作者
Peixia Zhang,Fangyin Zhu,Haixin Long,Li Wang,Lisheng Zhu,Haijun Chen,Yu Gao
出处
期刊:Biomedical Materials [IOP Publishing]
卷期号:18 (4): 045030-045030 被引量:2
标识
DOI:10.1088/1748-605x/ace018
摘要

Abstract Ultrasound (US) has been used in drug delivery systems for controlling drug release and activation of US-sensitive drugs for sonodynamic therapy of cancer. In our previous work, we found that erlotinib-grafted chitosan nanocomplexes loading perfluorooctyl bromide and hematoporphyrin under US irradiation showed satisfactory therapeutic effects for non-small cell lung cancer treatment. However, the underlying mechanism of US-mediated delivery and therapy has not been fully explored. In this work, the underlying mechanisms of the US-induced effects of the nanocomplexes were evaluated at the physical and biological levels after the chitosan-based nanocomplexes were characterized. The results showed that US could activate the cavitation effects and promote nanocomplexes penetrating into the depth of three-dimensional multicellular tumor spheroids (3D MCTSs) when nanocomplexes were selectively uptaken by targeted cancer cells, but push the extracellular nanocomplexes out of the 3D MCTSs. US demonstrated strong tissue penetration ability to effectively induce obvious reactive oxygen species production deep inside the 3D MCTSs. Under the US condition of 0.1 W cm −2 for 1 min, US caused little mechanical damage and weak thermal effect to avoid severe cell necrosis, whereas cell apoptosis could be induced by collapse of mitochondrial membrane potential and the nucleus damage. The present study indicates that US can potentially be used jointly with nanomedicine to improve targeted drug delivery and combination therapy of deep-seated tumors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
自由的梦露完成签到 ,获得积分10
9秒前
xx发布了新的文献求助10
9秒前
江任意西完成签到 ,获得积分10
24秒前
lensray完成签到,获得积分10
51秒前
我是老大应助科研通管家采纳,获得20
51秒前
FashionBoy应助科研通管家采纳,获得10
52秒前
科目三应助科研通管家采纳,获得10
52秒前
学术小白完成签到,获得积分10
55秒前
深情安青应助Forizix采纳,获得10
1分钟前
1分钟前
Forizix完成签到,获得积分10
1分钟前
Forizix发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
乐生发布了新的文献求助50
1分钟前
CodeCraft应助泡面小猪采纳,获得10
1分钟前
科研通AI2S应助活力鸿采纳,获得10
1分钟前
我是老大应助乐生采纳,获得10
2分钟前
2分钟前
百里盼山发布了新的文献求助10
2分钟前
百里盼山完成签到,获得积分20
2分钟前
执着夏山完成签到,获得积分10
2分钟前
Jonas完成签到,获得积分10
2分钟前
2分钟前
泡面小猪发布了新的文献求助10
2分钟前
隐形曼青应助科研通管家采纳,获得10
2分钟前
Hello应助科研通管家采纳,获得10
2分钟前
Lucas应助科研通管家采纳,获得10
2分钟前
3分钟前
foxmail.com完成签到,获得积分10
3分钟前
foxmail.com发布了新的文献求助10
3分钟前
3分钟前
乐生发布了新的文献求助10
3分钟前
乐生完成签到,获得积分10
3分钟前
温暖的盼山应助乐生采纳,获得10
3分钟前
ww发布了新的文献求助20
4分钟前
5分钟前
医路通行发布了新的文献求助20
5分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137011
求助须知:如何正确求助?哪些是违规求助? 2787960
关于积分的说明 7784091
捐赠科研通 2444041
什么是DOI,文献DOI怎么找? 1299638
科研通“疑难数据库(出版商)”最低求助积分说明 625497
版权声明 600989