STFDiff: Remote sensing image spatiotemporal fusion with diffusion models

计算机科学 图像融合 扩散 融合 遥感 图像(数学) 计算机视觉 人工智能 地质学 物理 语言学 哲学 热力学
作者
He Huang,Wei He,Hongyan Zhang,Yu Xia,Liangpei Zhang
出处
期刊:Information Fusion [Elsevier]
卷期号:111: 102505-102505 被引量:2
标识
DOI:10.1016/j.inffus.2024.102505
摘要

Spatiotemporal fusion (STF) methods aim to blend satellite images with different spatial and temporal resolutions to support more frequent and precise monitoring. In the past decades, amounts of STF methods have been developed with remarkable success. However, among the existing methods, the traditional methods rely on the linear assumption and fail for complex and diverse scenes with great dynamics. The deep learning-based methods suffer from the spatial, temporal and spectral uncertainties in STF and the mode collapse problem of generative adversarial networks (GANs) for remote sensing images with complex scenes. To address these problems, we propose a novel spatiotemporal fusion method with diffusion models (STFDiff) that merges a coarse image at the prediction date and the coarse-fine image pairs acquired at other dates to generate the fine image at the prediction date. STFDiff generates the fine image via repeated refinement with initialized Gaussian noise under the control of the prior images acquired at other dates. At each iteration, the noise is predicted through a conditional noise predictor dual-stream Unet (DS-Unet), which enhances the noise features by subtracting the extracted features from the dual-stream encoders (DS-encoders). The noise is then gradually removed, and finally the fine image is generated with similar spatial details to the fine images and temporal dynamics to the coarse images. Comprehensive experiments on two public datasets and one personally collected dataset demonstrate that STFDiff outperforms state-of-the-art (SOTA) methods. To further verify the applicability of STFDiff on downstream tasks, we compared the K-means clustering results on the fusion images generated by different methods. The results show that the classification results of STFDiff are the most consistent with the actual images and obtain ∼2% mean intersection over union (mIoU) improvement over the SOTA methods. The source code is available at https://github.com/prowDIY/STF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaobao完成签到,获得积分10
刚刚
bkagyin应助雨水采纳,获得10
1秒前
1秒前
1秒前
gszy1975完成签到,获得积分10
1秒前
魁梧的雨双完成签到,获得积分10
2秒前
2秒前
南瓜气气完成签到,获得积分10
2秒前
nana完成签到,获得积分10
2秒前
3秒前
云瑾应助腼腆的老虎采纳,获得20
4秒前
4秒前
4秒前
祝英台完成签到 ,获得积分10
4秒前
ste11ar完成签到,获得积分10
5秒前
jay发布了新的文献求助10
5秒前
sdysdbd发布了新的文献求助30
5秒前
feijelly完成签到,获得积分10
6秒前
Rahul完成签到,获得积分10
6秒前
灵巧擎汉发布了新的文献求助10
8秒前
xiaotianli完成签到,获得积分10
8秒前
happiness发布了新的文献求助20
8秒前
NexusExplorer应助1123432412采纳,获得10
8秒前
休思完成签到 ,获得积分10
9秒前
丘比特应助musei采纳,获得10
9秒前
9秒前
laoxie301发布了新的文献求助10
10秒前
李大龙发布了新的文献求助10
10秒前
师桐完成签到,获得积分10
11秒前
jay完成签到,获得积分10
12秒前
研友_8K2QJZ发布了新的文献求助50
12秒前
无情的聋五完成签到,获得积分10
12秒前
12秒前
sdysdbd完成签到,获得积分10
15秒前
合一海盗完成签到,获得积分10
15秒前
orixero应助iuv采纳,获得10
16秒前
17秒前
科研通AI2S应助无情的聋五采纳,获得10
17秒前
curtisness应助平常的四娘采纳,获得10
18秒前
失眠的血茗完成签到,获得积分10
18秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137214
求助须知:如何正确求助?哪些是违规求助? 2788251
关于积分的说明 7785413
捐赠科研通 2444284
什么是DOI,文献DOI怎么找? 1299869
科研通“疑难数据库(出版商)”最低求助积分说明 625639
版权声明 601023