STFDiff: Remote sensing image spatiotemporal fusion with diffusion models

计算机科学 图像融合 扩散 融合 遥感 图像(数学) 计算机视觉 人工智能 地质学 物理 语言学 哲学 热力学
作者
He Huang,Wei He,Hongyan Zhang,Yu Xia,Liangpei Zhang
出处
期刊:Information Fusion [Elsevier]
卷期号:111: 102505-102505 被引量:2
标识
DOI:10.1016/j.inffus.2024.102505
摘要

Spatiotemporal fusion (STF) methods aim to blend satellite images with different spatial and temporal resolutions to support more frequent and precise monitoring. In the past decades, amounts of STF methods have been developed with remarkable success. However, among the existing methods, the traditional methods rely on the linear assumption and fail for complex and diverse scenes with great dynamics. The deep learning-based methods suffer from the spatial, temporal and spectral uncertainties in STF and the mode collapse problem of generative adversarial networks (GANs) for remote sensing images with complex scenes. To address these problems, we propose a novel spatiotemporal fusion method with diffusion models (STFDiff) that merges a coarse image at the prediction date and the coarse-fine image pairs acquired at other dates to generate the fine image at the prediction date. STFDiff generates the fine image via repeated refinement with initialized Gaussian noise under the control of the prior images acquired at other dates. At each iteration, the noise is predicted through a conditional noise predictor dual-stream Unet (DS-Unet), which enhances the noise features by subtracting the extracted features from the dual-stream encoders (DS-encoders). The noise is then gradually removed, and finally the fine image is generated with similar spatial details to the fine images and temporal dynamics to the coarse images. Comprehensive experiments on two public datasets and one personally collected dataset demonstrate that STFDiff outperforms state-of-the-art (SOTA) methods. To further verify the applicability of STFDiff on downstream tasks, we compared the K-means clustering results on the fusion images generated by different methods. The results show that the classification results of STFDiff are the most consistent with the actual images and obtain ∼2% mean intersection over union (mIoU) improvement over the SOTA methods. The source code is available at https://github.com/prowDIY/STF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tY完成签到,获得积分20
刚刚
傲娇的凡旋应助卢健辉采纳,获得10
1秒前
CodeCraft应助calbee采纳,获得10
1秒前
3秒前
3秒前
sw98318完成签到,获得积分10
4秒前
impala完成签到,获得积分10
4秒前
4秒前
欣喜访旋发布了新的文献求助10
4秒前
朱江涛完成签到 ,获得积分10
5秒前
角鸮完成签到,获得积分10
5秒前
zly完成签到 ,获得积分10
6秒前
雨霧雲完成签到,获得积分10
6秒前
qnqqq完成签到 ,获得积分10
7秒前
健壮的涑发布了新的文献求助10
7秒前
8秒前
8秒前
秋山伊夫完成签到,获得积分10
8秒前
入门的橙橙完成签到 ,获得积分10
8秒前
BONBON发布了新的文献求助10
9秒前
11秒前
TOM完成签到,获得积分10
11秒前
隐形曼青应助欣喜访旋采纳,获得10
12秒前
852应助Millie采纳,获得10
12秒前
龍Ryu完成签到,获得积分10
13秒前
内向凌兰发布了新的文献求助10
14秒前
伍秋望完成签到,获得积分10
14秒前
15秒前
16秒前
跳跃发布了新的文献求助10
17秒前
持卿应助宗磬采纳,获得20
17秒前
17秒前
花生油炒花生米完成签到 ,获得积分10
17秒前
Riki完成签到,获得积分10
19秒前
虚幻白玉发布了新的文献求助10
19秒前
德行天下完成签到,获得积分10
19秒前
Jenny应助lan采纳,获得10
20秒前
fztnh完成签到,获得积分10
20秒前
上官若男应助lyz666采纳,获得10
20秒前
顾念完成签到 ,获得积分10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808