Suspended sediment load prediction using sparrow search algorithm-based support vector machine model

支持向量机 均方误差 水准点(测量) 计算机科学 算法 数据挖掘 机器学习 统计 数学 地质学 大地测量学
作者
Sandeep Samantaray,Abinash Sahoo,Deba Prakash Satapathy,Atheer Y. Oudah,Zaher Mundher Yaseen‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1) 被引量:1
标识
DOI:10.1038/s41598-024-63490-1
摘要

Abstract Prediction of suspended sediment load (SSL) in streams is significant in hydrological modeling and water resources engineering. Development of a consistent and accurate sediment prediction model is highly necessary due to its difficulty and complexity in practice because sediment transportation is vastly non-linear and is governed by several variables like rainfall, strength of flow, and sediment supply. Artificial intelligence (AI) approaches have become prevalent in water resource engineering to solve multifaceted problems like sediment load modelling. The present work proposes a robust model incorporating support vector machine with a novel sparrow search algorithm (SVM-SSA) to compute SSL in Tilga, Jenapur, Jaraikela and Gomlai stations in Brahmani river basin, Odisha State, India. Five different scenarios are considered for model development. Performance assessment of developed model is analyzed on basis of mean absolute error (MAE), root mean squared error (RMSE), determination coefficient (R 2 ), and Nash–Sutcliffe efficiency (E NS ). The outcomes of SVM-SSA model are compared with three hybrid models, namely SVM-BOA (Butterfly optimization algorithm), SVM-GOA (Grasshopper optimization algorithm), SVM-BA (Bat algorithm), and benchmark SVM model. The findings revealed that SVM-SSA model successfully estimates SSL with high accuracy for scenario V with sediment (3-month lag) and discharge (current time-step and 3-month lag) as input than other alternatives with RMSE = 15.5287, MAE = 15.3926, and E NS = 0.96481. The conventional SVM model performed the worst in SSL prediction. Findings of this investigation tend to claim suitability of employed approach to model SSL in rivers precisely and reliably. The prediction model guarantees the precision of the forecasted outcomes while significantly decreasing the computing time expenditure, and the precision satisfies the demands of realistic engineering applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Liam发布了新的文献求助10
刚刚
1秒前
CodeCraft应助Qiang采纳,获得10
1秒前
wenze发布了新的文献求助10
1秒前
明月关注了科研通微信公众号
2秒前
浅辰发布了新的文献求助10
3秒前
5秒前
5秒前
超帅路灯发布了新的文献求助10
5秒前
落寞妙松发布了新的文献求助30
5秒前
zho应助梦梦采纳,获得10
5秒前
善学以致用应助yufei采纳,获得10
6秒前
Garry应助斯李iko采纳,获得10
6秒前
自觉草莓发布了新的文献求助10
6秒前
阳光大有给李剑鸿的求助进行了留言
6秒前
7秒前
南风平发布了新的文献求助10
8秒前
8秒前
小熊座a发布了新的文献求助10
10秒前
10秒前
故意姑娘发布了新的文献求助10
10秒前
丘比特应助aaaaa采纳,获得10
12秒前
demo1发布了新的文献求助10
13秒前
李健应助勤奋的酸奶采纳,获得10
13秒前
黄小翰发布了新的文献求助10
13秒前
14秒前
香蕉闭月发布了新的文献求助10
16秒前
木木 12完成签到,获得积分10
18秒前
泡泡鱼完成签到 ,获得积分10
18秒前
19秒前
19秒前
Crazyalien关注了科研通微信公众号
19秒前
小蘑菇应助john采纳,获得10
20秒前
21秒前
22秒前
22秒前
酷炫的黄豆完成签到 ,获得积分10
22秒前
香蕉闭月完成签到,获得积分10
23秒前
装好心完成签到,获得积分10
23秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124390
求助须知:如何正确求助?哪些是违规求助? 2774743
关于积分的说明 7723567
捐赠科研通 2430180
什么是DOI,文献DOI怎么找? 1290974
科研通“疑难数据库(出版商)”最低求助积分说明 622006
版权声明 600297