Suspended sediment load prediction using sparrow search algorithm-based support vector machine model

支持向量机 均方误差 水准点(测量) 计算机科学 算法 数据挖掘 机器学习 统计 数学 地质学 大地测量学
作者
Sandeep Samantaray,Abinash Sahoo,Deba Prakash Satapathy,Atheer Y. Oudah,Zaher Mundher Yaseen‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1): 12889-12889 被引量:47
标识
DOI:10.1038/s41598-024-63490-1
摘要

Abstract Prediction of suspended sediment load (SSL) in streams is significant in hydrological modeling and water resources engineering. Development of a consistent and accurate sediment prediction model is highly necessary due to its difficulty and complexity in practice because sediment transportation is vastly non-linear and is governed by several variables like rainfall, strength of flow, and sediment supply. Artificial intelligence (AI) approaches have become prevalent in water resource engineering to solve multifaceted problems like sediment load modelling. The present work proposes a robust model incorporating support vector machine with a novel sparrow search algorithm (SVM-SSA) to compute SSL in Tilga, Jenapur, Jaraikela and Gomlai stations in Brahmani river basin, Odisha State, India. Five different scenarios are considered for model development. Performance assessment of developed model is analyzed on basis of mean absolute error (MAE), root mean squared error (RMSE), determination coefficient (R 2 ), and Nash–Sutcliffe efficiency (E NS ). The outcomes of SVM-SSA model are compared with three hybrid models, namely SVM-BOA (Butterfly optimization algorithm), SVM-GOA (Grasshopper optimization algorithm), SVM-BA (Bat algorithm), and benchmark SVM model. The findings revealed that SVM-SSA model successfully estimates SSL with high accuracy for scenario V with sediment (3-month lag) and discharge (current time-step and 3-month lag) as input than other alternatives with RMSE = 15.5287, MAE = 15.3926, and E NS = 0.96481. The conventional SVM model performed the worst in SSL prediction. Findings of this investigation tend to claim suitability of employed approach to model SSL in rivers precisely and reliably. The prediction model guarantees the precision of the forecasted outcomes while significantly decreasing the computing time expenditure, and the precision satisfies the demands of realistic engineering applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
水蜜桃桃完成签到,获得积分10
刚刚
2秒前
ming完成签到,获得积分10
2秒前
雪白幻巧完成签到,获得积分10
3秒前
Linda琳完成签到,获得积分10
4秒前
4秒前
blame完成签到,获得积分10
4秒前
4秒前
老猫头鹰完成签到,获得积分10
5秒前
爱笑若冰完成签到 ,获得积分10
6秒前
bobo完成签到,获得积分10
6秒前
7秒前
Akun完成签到,获得积分10
7秒前
jzmulyl完成签到,获得积分10
8秒前
我根本没长尾巴完成签到,获得积分10
8秒前
大大怪将军完成签到,获得积分20
9秒前
高唐完成签到,获得积分10
9秒前
DD发布了新的文献求助10
10秒前
在水一方应助崔尔蓉采纳,获得10
10秒前
Gu0F1完成签到 ,获得积分10
10秒前
盆盆发布了新的文献求助10
11秒前
alexsoong完成签到,获得积分10
11秒前
RYK完成签到 ,获得积分10
11秒前
大宝剑3号完成签到 ,获得积分10
11秒前
Akun发布了新的文献求助10
12秒前
12秒前
wangckyt完成签到,获得积分20
12秒前
13秒前
JCTera完成签到,获得积分10
13秒前
14秒前
osel完成签到,获得积分10
14秒前
红箭烟雨完成签到,获得积分10
15秒前
Hanoi347发布了新的文献求助200
16秒前
量子星尘发布了新的文献求助10
16秒前
duduying完成签到,获得积分10
16秒前
wualexandra完成签到,获得积分10
16秒前
小猪猪的饲养官完成签到 ,获得积分10
17秒前
tyro完成签到,获得积分10
17秒前
lyncee应助高唐采纳,获得30
17秒前
蓬莱依月完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Terminologia Embryologica 500
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612157
求助须知:如何正确求助?哪些是违规求助? 4696381
关于积分的说明 14891444
捐赠科研通 4732540
什么是DOI,文献DOI怎么找? 2546272
邀请新用户注册赠送积分活动 1510490
关于科研通互助平台的介绍 1473401