Suspended sediment load prediction using sparrow search algorithm-based support vector machine model

支持向量机 均方误差 水准点(测量) 计算机科学 算法 数据挖掘 机器学习 统计 数学 地质学 大地测量学
作者
Sandeep Samantaray,Abinash Sahoo,Deba Prakash Satapathy,Atheer Y. Oudah,Zaher Mundher Yaseen‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1): 12889-12889 被引量:47
标识
DOI:10.1038/s41598-024-63490-1
摘要

Abstract Prediction of suspended sediment load (SSL) in streams is significant in hydrological modeling and water resources engineering. Development of a consistent and accurate sediment prediction model is highly necessary due to its difficulty and complexity in practice because sediment transportation is vastly non-linear and is governed by several variables like rainfall, strength of flow, and sediment supply. Artificial intelligence (AI) approaches have become prevalent in water resource engineering to solve multifaceted problems like sediment load modelling. The present work proposes a robust model incorporating support vector machine with a novel sparrow search algorithm (SVM-SSA) to compute SSL in Tilga, Jenapur, Jaraikela and Gomlai stations in Brahmani river basin, Odisha State, India. Five different scenarios are considered for model development. Performance assessment of developed model is analyzed on basis of mean absolute error (MAE), root mean squared error (RMSE), determination coefficient (R 2 ), and Nash–Sutcliffe efficiency (E NS ). The outcomes of SVM-SSA model are compared with three hybrid models, namely SVM-BOA (Butterfly optimization algorithm), SVM-GOA (Grasshopper optimization algorithm), SVM-BA (Bat algorithm), and benchmark SVM model. The findings revealed that SVM-SSA model successfully estimates SSL with high accuracy for scenario V with sediment (3-month lag) and discharge (current time-step and 3-month lag) as input than other alternatives with RMSE = 15.5287, MAE = 15.3926, and E NS = 0.96481. The conventional SVM model performed the worst in SSL prediction. Findings of this investigation tend to claim suitability of employed approach to model SSL in rivers precisely and reliably. The prediction model guarantees the precision of the forecasted outcomes while significantly decreasing the computing time expenditure, and the precision satisfies the demands of realistic engineering applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
EZboom发布了新的文献求助10
2秒前
3秒前
天天快乐应助加百莉采纳,获得10
3秒前
科目三应助呆妞采纳,获得10
4秒前
4秒前
小巧曼容完成签到,获得积分10
4秒前
5秒前
黄臻发布了新的文献求助10
8秒前
温暖逊发布了新的文献求助10
10秒前
11秒前
liuynnn发布了新的文献求助10
13秒前
zhou完成签到,获得积分10
13秒前
14秒前
15秒前
加百莉发布了新的文献求助10
15秒前
apparate完成签到,获得积分10
18秒前
呆妞发布了新的文献求助10
20秒前
liuynnn完成签到,获得积分20
22秒前
天才小仙女完成签到,获得积分10
25秒前
行星一只兔完成签到 ,获得积分10
27秒前
BowieHuang应助Jodie采纳,获得100
28秒前
Orange应助chichi采纳,获得10
30秒前
南风完成签到 ,获得积分10
32秒前
彪壮的吐司完成签到,获得积分10
34秒前
zhouxw27完成签到,获得积分10
42秒前
akiyy完成签到,获得积分10
42秒前
无花果应助akiyy采纳,获得10
45秒前
Juid举报老阎求助涉嫌违规
52秒前
快乐的90后fjk完成签到 ,获得积分10
53秒前
good完成签到,获得积分10
54秒前
55秒前
55秒前
1分钟前
幽默沛山完成签到 ,获得积分10
1分钟前
good发布了新的文献求助10
1分钟前
端庄的奇异果完成签到 ,获得积分10
1分钟前
1分钟前
BroaI完成签到,获得积分20
1分钟前
狂野天蓝发布了新的文献求助10
1分钟前
搜集达人应助gj2221423采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557689
求助须知:如何正确求助?哪些是违规求助? 4642768
关于积分的说明 14669036
捐赠科研通 4584191
什么是DOI,文献DOI怎么找? 2514668
邀请新用户注册赠送积分活动 1488870
关于科研通互助平台的介绍 1459538