Suspended sediment load prediction using sparrow search algorithm-based support vector machine model

支持向量机 均方误差 水准点(测量) 计算机科学 算法 数据挖掘 机器学习 统计 数学 地质学 大地测量学
作者
Sandeep Samantaray,Abinash Sahoo,Deba Prakash Satapathy,Atheer Y. Oudah,Zaher Mundher Yaseen‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1) 被引量:1
标识
DOI:10.1038/s41598-024-63490-1
摘要

Abstract Prediction of suspended sediment load (SSL) in streams is significant in hydrological modeling and water resources engineering. Development of a consistent and accurate sediment prediction model is highly necessary due to its difficulty and complexity in practice because sediment transportation is vastly non-linear and is governed by several variables like rainfall, strength of flow, and sediment supply. Artificial intelligence (AI) approaches have become prevalent in water resource engineering to solve multifaceted problems like sediment load modelling. The present work proposes a robust model incorporating support vector machine with a novel sparrow search algorithm (SVM-SSA) to compute SSL in Tilga, Jenapur, Jaraikela and Gomlai stations in Brahmani river basin, Odisha State, India. Five different scenarios are considered for model development. Performance assessment of developed model is analyzed on basis of mean absolute error (MAE), root mean squared error (RMSE), determination coefficient (R 2 ), and Nash–Sutcliffe efficiency (E NS ). The outcomes of SVM-SSA model are compared with three hybrid models, namely SVM-BOA (Butterfly optimization algorithm), SVM-GOA (Grasshopper optimization algorithm), SVM-BA (Bat algorithm), and benchmark SVM model. The findings revealed that SVM-SSA model successfully estimates SSL with high accuracy for scenario V with sediment (3-month lag) and discharge (current time-step and 3-month lag) as input than other alternatives with RMSE = 15.5287, MAE = 15.3926, and E NS = 0.96481. The conventional SVM model performed the worst in SSL prediction. Findings of this investigation tend to claim suitability of employed approach to model SSL in rivers precisely and reliably. The prediction model guarantees the precision of the forecasted outcomes while significantly decreasing the computing time expenditure, and the precision satisfies the demands of realistic engineering applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
神经蛙发布了新的文献求助10
1秒前
完美世界应助Emma采纳,获得10
1秒前
眼睛大天抒完成签到,获得积分10
1秒前
矮小的觅云完成签到 ,获得积分10
2秒前
王小西完成签到,获得积分10
2秒前
快乐寄风完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
3秒前
3秒前
smartlailai发布了新的文献求助10
3秒前
单薄广山完成签到,获得积分10
3秒前
共享精神应助洪山老狗采纳,获得10
4秒前
zyj完成签到,获得积分10
5秒前
zrs关闭了zrs文献求助
5秒前
杨雪妮发布了新的文献求助10
6秒前
Suraim发布了新的文献求助10
6秒前
斯文败类应助BABY五齿采纳,获得10
6秒前
Ann发布了新的文献求助10
6秒前
zhhr发布了新的文献求助10
6秒前
Liooo完成签到 ,获得积分10
7秒前
CZN发布了新的文献求助10
7秒前
8秒前
打打应助无聊的南松采纳,获得10
8秒前
jenningseastera应助阿胡采纳,获得30
9秒前
9秒前
1433223完成签到,获得积分10
9秒前
温柔的尔丝完成签到,获得积分10
9秒前
哈哈哈我要查文献完成签到 ,获得积分10
10秒前
勤勤的新星完成签到,获得积分10
11秒前
Dky_安静的初夏应助青青草采纳,获得10
11秒前
大大的西瓜完成签到 ,获得积分10
11秒前
杉杉来吃完成签到,获得积分10
11秒前
12秒前
smartlailai完成签到,获得积分10
12秒前
Lucas应助稳重绿旋采纳,获得10
12秒前
情怀应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950472
求助须知:如何正确求助?哪些是违规求助? 3495913
关于积分的说明 11079657
捐赠科研通 3226328
什么是DOI,文献DOI怎么找? 1783760
邀请新用户注册赠送积分活动 867823
科研通“疑难数据库(出版商)”最低求助积分说明 800942