Suspended sediment load prediction using sparrow search algorithm-based support vector machine model

支持向量机 均方误差 水准点(测量) 计算机科学 算法 数据挖掘 机器学习 统计 数学 地质学 大地测量学
作者
Sandeep Samantaray,Abinash Sahoo,Deba Prakash Satapathy,Atheer Y. Oudah,Zaher Mundher Yaseen‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1): 12889-12889 被引量:47
标识
DOI:10.1038/s41598-024-63490-1
摘要

Abstract Prediction of suspended sediment load (SSL) in streams is significant in hydrological modeling and water resources engineering. Development of a consistent and accurate sediment prediction model is highly necessary due to its difficulty and complexity in practice because sediment transportation is vastly non-linear and is governed by several variables like rainfall, strength of flow, and sediment supply. Artificial intelligence (AI) approaches have become prevalent in water resource engineering to solve multifaceted problems like sediment load modelling. The present work proposes a robust model incorporating support vector machine with a novel sparrow search algorithm (SVM-SSA) to compute SSL in Tilga, Jenapur, Jaraikela and Gomlai stations in Brahmani river basin, Odisha State, India. Five different scenarios are considered for model development. Performance assessment of developed model is analyzed on basis of mean absolute error (MAE), root mean squared error (RMSE), determination coefficient (R 2 ), and Nash–Sutcliffe efficiency (E NS ). The outcomes of SVM-SSA model are compared with three hybrid models, namely SVM-BOA (Butterfly optimization algorithm), SVM-GOA (Grasshopper optimization algorithm), SVM-BA (Bat algorithm), and benchmark SVM model. The findings revealed that SVM-SSA model successfully estimates SSL with high accuracy for scenario V with sediment (3-month lag) and discharge (current time-step and 3-month lag) as input than other alternatives with RMSE = 15.5287, MAE = 15.3926, and E NS = 0.96481. The conventional SVM model performed the worst in SSL prediction. Findings of this investigation tend to claim suitability of employed approach to model SSL in rivers precisely and reliably. The prediction model guarantees the precision of the forecasted outcomes while significantly decreasing the computing time expenditure, and the precision satisfies the demands of realistic engineering applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
3秒前
独行侠杨进步完成签到,获得积分10
3秒前
追寻的续完成签到,获得积分10
3秒前
5秒前
CipherSage应助Eternity采纳,获得10
5秒前
6秒前
追寻的续发布了新的文献求助100
6秒前
充电宝应助潘潘采纳,获得10
6秒前
6秒前
leemonster发布了新的文献求助10
7秒前
vision发布了新的文献求助10
7秒前
平淡尔琴完成签到,获得积分10
8秒前
8秒前
阿鑫完成签到 ,获得积分10
9秒前
慕子默发布了新的文献求助10
9秒前
9秒前
11秒前
11秒前
烟花应助专注鹤采纳,获得10
11秒前
甜橙汁发布了新的文献求助10
12秒前
林林林发布了新的文献求助10
14秒前
不再方里发布了新的文献求助10
15秒前
15秒前
16秒前
17秒前
18秒前
哐哧哐哧薯完成签到 ,获得积分10
19秒前
zhu完成签到,获得积分10
20秒前
爆米花应助张文涛采纳,获得10
20秒前
尔玉完成签到 ,获得积分10
20秒前
21秒前
酷波er应助周升伟采纳,获得10
21秒前
邱医生发布了新的文献求助10
21秒前
21秒前
zlf完成签到,获得积分10
22秒前
吉吉豹发布了新的文献求助10
23秒前
Linlin发布了新的文献求助10
25秒前
量子星尘发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5511539
求助须知:如何正确求助?哪些是违规求助? 4606129
关于积分的说明 14498184
捐赠科研通 4541408
什么是DOI,文献DOI怎么找? 2488503
邀请新用户注册赠送积分活动 1470552
关于科研通互助平台的介绍 1442910