Suspended sediment load prediction using sparrow search algorithm-based support vector machine model

支持向量机 均方误差 水准点(测量) 计算机科学 算法 数据挖掘 机器学习 统计 数学 地质学 大地测量学
作者
Sandeep Samantaray,Abinash Sahoo,Deba Prakash Satapathy,Atheer Y. Oudah,Zaher Mundher Yaseen‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1): 12889-12889 被引量:47
标识
DOI:10.1038/s41598-024-63490-1
摘要

Abstract Prediction of suspended sediment load (SSL) in streams is significant in hydrological modeling and water resources engineering. Development of a consistent and accurate sediment prediction model is highly necessary due to its difficulty and complexity in practice because sediment transportation is vastly non-linear and is governed by several variables like rainfall, strength of flow, and sediment supply. Artificial intelligence (AI) approaches have become prevalent in water resource engineering to solve multifaceted problems like sediment load modelling. The present work proposes a robust model incorporating support vector machine with a novel sparrow search algorithm (SVM-SSA) to compute SSL in Tilga, Jenapur, Jaraikela and Gomlai stations in Brahmani river basin, Odisha State, India. Five different scenarios are considered for model development. Performance assessment of developed model is analyzed on basis of mean absolute error (MAE), root mean squared error (RMSE), determination coefficient (R 2 ), and Nash–Sutcliffe efficiency (E NS ). The outcomes of SVM-SSA model are compared with three hybrid models, namely SVM-BOA (Butterfly optimization algorithm), SVM-GOA (Grasshopper optimization algorithm), SVM-BA (Bat algorithm), and benchmark SVM model. The findings revealed that SVM-SSA model successfully estimates SSL with high accuracy for scenario V with sediment (3-month lag) and discharge (current time-step and 3-month lag) as input than other alternatives with RMSE = 15.5287, MAE = 15.3926, and E NS = 0.96481. The conventional SVM model performed the worst in SSL prediction. Findings of this investigation tend to claim suitability of employed approach to model SSL in rivers precisely and reliably. The prediction model guarantees the precision of the forecasted outcomes while significantly decreasing the computing time expenditure, and the precision satisfies the demands of realistic engineering applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
FashionBoy应助浮浮世世采纳,获得10
1秒前
东方元语发布了新的文献求助10
2秒前
大吉发布了新的文献求助10
3秒前
3秒前
李健应助123采纳,获得10
5秒前
L1发布了新的文献求助10
7秒前
8秒前
Flex完成签到,获得积分10
8秒前
JamesPei应助gkq采纳,获得10
9秒前
月月大吉大利完成签到 ,获得积分10
9秒前
安河桥完成签到,获得积分10
10秒前
12秒前
进击的PhD应助小卡拉米采纳,获得10
12秒前
健壮的芷容完成签到,获得积分10
12秒前
13秒前
14秒前
燕然都护完成签到,获得积分20
14秒前
14秒前
morning发布了新的文献求助10
15秒前
16秒前
cswcmrji发布了新的文献求助10
16秒前
superbanggg完成签到,获得积分10
16秒前
17秒前
田博妍发布了新的文献求助30
17秒前
SciGPT应助橘生淮南采纳,获得10
18秒前
18秒前
顾矜应助宁静采纳,获得10
19秒前
Evooolet发布了新的文献求助10
19秒前
LLR完成签到 ,获得积分10
22秒前
23秒前
威武的夜绿完成签到,获得积分10
23秒前
24秒前
gkq发布了新的文献求助10
25秒前
小二郎应助Liyipu采纳,获得10
26秒前
科研通AI6应助曦耀采纳,获得10
27秒前
Orange应助LIU采纳,获得10
27秒前
小蘑菇应助大土豆采纳,获得10
27秒前
橘生淮南完成签到,获得积分10
27秒前
kxm发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5638086
求助须知:如何正确求助?哪些是违规求助? 4744566
关于积分的说明 15001034
捐赠科研通 4796214
什么是DOI,文献DOI怎么找? 2562406
邀请新用户注册赠送积分活动 1521889
关于科研通互助平台的介绍 1481759