An efficient 3D finite element procedure for simulating wheel–rail cyclic contact and ratcheting

有限元法 结构工程 工程类 机械工程 材料科学 汽车工程
作者
Fang Ren,Zhen Yang,Zili Li
出处
期刊:Tribology International [Elsevier BV]
卷期号:198: 109878-109878 被引量:8
标识
DOI:10.1016/j.triboint.2024.109878
摘要

Various models for simulating rail ratcheting behaviour were developed to study rolling contact fatigue (RCF) damage in rails. However, limitations remain in terms of the accuracy of wheel–rail contact modelling and computational efficiency of the cyclic loading simulation. This study developed an efficient 3D finite element (FE) procedure to simulate ratcheting in rails subjected to numerous load cycles. The procedure simulates a wheel rolling repeatedly over a rail section with updated stress–strain states, enabling automatically executed cyclic loading simulation given a predefined number of cycles. To ensure the accuracy of the contact modelling, the effect of meshing schemes on subsurface stress distribution was examined. In addition, the FE contact model with the selected meshing scheme, which balances accuracy and computational efficiency, was verified against the widely accepted CONTACT program. Subsequently, a non-linear kinematic hardening (NLKH) steel material was used in the FE model for ratcheting simulations with up to 100 wheel-loading cycles. The rail surface and subsurface stress states were replicated under partial-slip wheel–rail rolling contact conditions with traction coefficients of 0.10, 0.20 and 0.35, respectively. The ratcheting behaviour was extensively analysed in terms of plastic deformation, contact patch evolution, and ratcheting rates. The simulated plastic deformation was found to alter the contact geometry and thus contact stresses, which in turn affect further accumulation of plastic deformation and subsequent ratcheting strains. These findings highlighted the importance of considering the interplay between the rail ratcheting behaviour of the rail and evolving contact conditions for predicting ratcheting and RCF damage in rails.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学茶小白完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
1秒前
1秒前
3秒前
3秒前
抽屉里的猫完成签到,获得积分10
5秒前
西西歪完成签到,获得积分20
5秒前
腾腾完成签到 ,获得积分10
6秒前
1111完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
酷炫的不悔完成签到,获得积分10
6秒前
余鹰完成签到,获得积分10
7秒前
7秒前
时尚俊驰完成签到 ,获得积分20
7秒前
平常安雁完成签到 ,获得积分10
7秒前
喜悦香萱发布了新的文献求助10
7秒前
刻苦的秋玲完成签到,获得积分10
7秒前
聪明的宛菡完成签到,获得积分10
8秒前
meng完成签到,获得积分10
8秒前
fqk完成签到,获得积分10
8秒前
jyjy完成签到,获得积分10
8秒前
孟子发布了新的文献求助10
11秒前
Air完成签到 ,获得积分10
11秒前
swy完成签到,获得积分10
12秒前
寂寞的小乌龟完成签到,获得积分10
13秒前
13秒前
心流完成签到 ,获得积分10
13秒前
14秒前
量子星尘发布了新的文献求助150
14秒前
hdbys完成签到,获得积分10
14秒前
wgl完成签到,获得积分10
15秒前
幽默的忆霜完成签到 ,获得积分10
16秒前
richhu完成签到,获得积分10
16秒前
lululala完成签到 ,获得积分10
17秒前
17秒前
17秒前
Opse完成签到,获得积分10
19秒前
ke科研小白完成签到,获得积分10
20秒前
21秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661181
求助须知:如何正确求助?哪些是违规求助? 3222298
关于积分的说明 9744486
捐赠科研通 2931912
什么是DOI,文献DOI怎么找? 1605300
邀请新用户注册赠送积分活动 757805
科研通“疑难数据库(出版商)”最低求助积分说明 734569