GB-DBSCAN: A fast granular-ball based DBSCAN clustering algorithm

数据库扫描 聚类分析 计算机科学 球(数学) 模式识别(心理学) 算法 人工智能 数据挖掘 数学 相关聚类 CURE数据聚类算法 几何学
作者
Dongdong Cheng,Cheng Zhang,Ya Li,Shuyin Xia,Guoyin Wang,Jinlong Huang,Sulan Zhang,Jiang Xie
出处
期刊:Information Sciences [Elsevier BV]
卷期号:674: 120731-120731 被引量:6
标识
DOI:10.1016/j.ins.2024.120731
摘要

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) identifies high-density connected areas as clusters, so that it has advantages in discovering arbitrary-shaped clusters. However, it has difficulty in adjusting parameters and since it needs to scan all data points in turn, its time complexity is O(n2). Granular-ball (GB) is a coarse grained representation of data. It is on the basis of the assumption that an object and its local neighbors have similar distribution and they have high possibility of belonging to the same class. It has been introduced into supervised learning by Xia et al. to improve the efficiency of supervised learning. Inspired by the idea of granular-ball, we introduce it into unsupervised learning and use it to improve the efficiency of DBSCAN, called GB-DBSCAN. The main idea of the proposed algorithm GB-DBSCAN is to employ granular-ball to represent a set of data points and then clustering on granular-balls, instead of the data points. Firstly, we use k-nearest neighbors (KNN) to generate granular-balls, which is a bottom-up strategy, and describe granular-balls according to their centers and radius. Then, the granular-balls are divided into Core-GBs and Non-Core-GBs according to their density. After that, the Core-GBs are merged into clusters according to the idea of DBSCAN and the Non-Core-GBs are assigned to the appropriate clusters. Since the granular-balls' number is much smaller than the size of the objects in a dataset, the running time of DBSCAN is greatly reduced. By comparing with KNN-BLOCK DBSCAN, RNN-DBSCAN, DBSCAN, K-means, DP and SNN-DPC algorithms, the proposed algorithm can get similar or even better clustering result in much less running time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助kaka采纳,获得10
1秒前
2秒前
2秒前
星辰大海应助缓慢念云采纳,获得10
3秒前
研友_VZG7GZ应助sugar采纳,获得30
3秒前
3秒前
泥娃娃发布了新的文献求助10
3秒前
鲤鱼向珊发布了新的文献求助10
5秒前
Rondab应助虚幻赛凤采纳,获得30
6秒前
Miaa完成签到,获得积分10
6秒前
nuomi发布了新的文献求助10
7秒前
xu完成签到,获得积分10
7秒前
qwer发布了新的文献求助10
7秒前
mnlxx14发布了新的文献求助10
8秒前
17完成签到,获得积分10
8秒前
9秒前
sss发布了新的文献求助10
14秒前
柠安完成签到,获得积分10
15秒前
夏目发布了新的文献求助10
15秒前
精灵发布了新的文献求助10
17秒前
李爱国应助苯基乙胺采纳,获得10
19秒前
CipherSage应助故意的怜晴采纳,获得10
20秒前
烟花应助灼灼朗朗采纳,获得10
21秒前
英俊的铭应助无舟采纳,获得10
22秒前
22秒前
虚幻赛凤完成签到,获得积分10
23秒前
23秒前
有为发布了新的文献求助10
24秒前
David完成签到,获得积分10
24秒前
26秒前
光亮笑柳完成签到,获得积分10
26秒前
juwish完成签到,获得积分10
26秒前
27秒前
28秒前
29秒前
wgt完成签到,获得积分20
30秒前
同屋如光发布了新的文献求助10
31秒前
gy发布了新的文献求助10
31秒前
31秒前
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966681
求助须知:如何正确求助?哪些是违规求助? 3512158
关于积分的说明 11162133
捐赠科研通 3247021
什么是DOI,文献DOI怎么找? 1793676
邀请新用户注册赠送积分活动 874532
科研通“疑难数据库(出版商)”最低求助积分说明 804421