已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

GB-DBSCAN: A fast granular-ball based DBSCAN clustering algorithm

数据库扫描 聚类分析 计算机科学 球(数学) 模式识别(心理学) 算法 人工智能 数据挖掘 数学 相关聚类 CURE数据聚类算法 几何学
作者
Dongdong Cheng,Cheng Zhang,Ya Li,Shuyin Xia,Guoyin Wang,Jinlong Huang,Sulan Zhang,Jiang Xie
出处
期刊:Information Sciences [Elsevier]
卷期号:674: 120731-120731 被引量:2
标识
DOI:10.1016/j.ins.2024.120731
摘要

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) identifies high-density connected areas as clusters, so that it has advantages in discovering arbitrary-shaped clusters. However, it has difficulty in adjusting parameters and since it needs to scan all data points in turn, its time complexity is O(n2). Granular-ball (GB) is a coarse grained representation of data. It is on the basis of the assumption that an object and its local neighbors have similar distribution and they have high possibility of belonging to the same class. It has been introduced into supervised learning by Xia et al. to improve the efficiency of supervised learning. Inspired by the idea of granular-ball, we introduce it into unsupervised learning and use it to improve the efficiency of DBSCAN, called GB-DBSCAN. The main idea of the proposed algorithm GB-DBSCAN is to employ granular-ball to represent a set of data points and then clustering on granular-balls, instead of the data points. Firstly, we use k-nearest neighbors (KNN) to generate granular-balls, which is a bottom-up strategy, and describe granular-balls according to their centers and radius. Then, the granular-balls are divided into Core-GBs and Non-Core-GBs according to their density. After that, the Core-GBs are merged into clusters according to the idea of DBSCAN and the Non-Core-GBs are assigned to the appropriate clusters. Since the granular-balls' number is much smaller than the size of the objects in a dataset, the running time of DBSCAN is greatly reduced. By comparing with KNN-BLOCK DBSCAN, RNN-DBSCAN, DBSCAN, K-means, DP and SNN-DPC algorithms, the proposed algorithm can get similar or even better clustering result in much less running time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ljy完成签到 ,获得积分10
刚刚
小羊咩完成签到 ,获得积分10
2秒前
damai完成签到,获得积分10
2秒前
顺利寄文完成签到 ,获得积分10
2秒前
zgd完成签到 ,获得积分10
2秒前
JY应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
3秒前
刘刘完成签到 ,获得积分10
3秒前
nater3ver完成签到,获得积分10
3秒前
红枫没有微雨怜完成签到 ,获得积分10
3秒前
Alias1234完成签到,获得积分10
4秒前
真的OK完成签到,获得积分10
4秒前
魏阳虹完成签到 ,获得积分10
4秒前
a.s完成签到 ,获得积分0
5秒前
zgd完成签到 ,获得积分10
7秒前
8秒前
11秒前
11秒前
liweiDr发布了新的文献求助10
15秒前
红枫没有微雨怜完成签到 ,获得积分10
16秒前
Tomice发布了新的文献求助10
17秒前
zxinyi完成签到 ,获得积分10
17秒前
子爵木完成签到 ,获得积分10
19秒前
21秒前
yk完成签到 ,获得积分10
24秒前
快乐抽屉发布了新的文献求助10
25秒前
Kashing完成签到 ,获得积分10
26秒前
27秒前
28秒前
29秒前
小马甲应助小米采纳,获得10
30秒前
hui_L发布了新的文献求助10
30秒前
bubble完成签到 ,获得积分10
30秒前
自然的依丝完成签到,获得积分20
31秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139360
求助须知:如何正确求助?哪些是违规求助? 2790295
关于积分的说明 7794749
捐赠科研通 2446704
什么是DOI,文献DOI怎么找? 1301351
科研通“疑难数据库(出版商)”最低求助积分说明 626134
版权声明 601123

今日热心研友

JY
20
注:热心度 = 本日应助数 + 本日被采纳获取积分÷10