“Image-Spectral” fusion monitoring of small cotton samples nitrogen content based on improved deep forest

融合 内容(测量理论) 氮气 环境科学 图像融合 遥感 人工智能 数学 计算机科学 化学 地理 图像(数学) 数学分析 哲学 语言学 有机化学
作者
Shizhe Qin,Yiren Ding,Tailong Zhou,Mingcan Zhai,Zhenghang Zhang,Mu Fan,Xin Lv,Ze Zhang,Lifu Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:221: 109002-109002
标识
DOI:10.1016/j.compag.2024.109002
摘要

Accurate monitoring of nitrogen nutrition is crucial for improving cotton yield and quality, as well as the ecological environment. The mainstream method for monitoring nutrition is to establish traditional machine learning (ML) models using a single data source. However, this approach has limitations such as limited access to feature information, model-fitting problems, and limited generalization. Deep learning (DL), on the other hand, has shown promise in complex nonlinear modeling tasks due to its flexible structure. However, it has its limitations, such as the fact that agronomic sample collection and testing are usually labor- and material-intensive, resulting in sample sizes that are too small to meet its training conditions. Therefore, there is an urgent need for DL models that can effectively integrate features from multiple data sources and accurately monitor crop nitrogen content, especially in scenarios with small samples. In this study, we conducted indoor pot experiments using the cotton variety Xinluzao 53 and subjected it to six nitrogen treatments. The data sources for our analysis included hyperspectral and digital images of the cotton leaves. To enhance representation learning capabilities, we enriched the multi-class base learners within each layer of the deep forest (DF) model and introduced skip connections. These enhancements improved the quality of inversion for both hyperspectral and digital image datasets. We then developed image-spectral fusion models, which combined the DF structure with stacking ensemble learning. Our focus was on three levels of fusion: feature-level fusion, decision-level fusion, and secondary decision-level fusion. This approach aimed to further enhance the accuracy and stability of nitrogen content inversion. The DF model satisfied the training condition for small samples. Compared to traditional ML algorithms and the original DF algorithm, the improved DF model achieved an increase in validation set R2 of 13.4–28.5% and 10.9–14.9%, respectively. These findings highlight the enhanced accuracy and stability of the improved DF model. Additionally, compared to the optimal inversion model using two single data sources, the "Image-Spectral" three-level fusion models exhibited improvements in validation set R2 of 8.6–9.3%, 10.5–11.2%, and 11.8–12.5% for feature-level, decision-level, and secondary decision-level fusion, respectively. The improved DF and three-level fusion model collectively contributed to the increased accuracy of cotton nitrogen content inversion. Among these models, the secondary decision-level fusion model demonstrated the most marked improvement. This methodology provides valuable insights into monitoring crop phenotypic parameters in situations with limited sample sizes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大肉猪完成签到,获得积分10
刚刚
sln完成签到,获得积分10
刚刚
橙子abcy发布了新的文献求助10
刚刚
YifanWang应助long-zhang采纳,获得30
刚刚
zhying55发布了新的文献求助10
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
1秒前
iNk应助科研通管家采纳,获得10
1秒前
王博士完成签到,获得积分10
1秒前
思源应助科研通管家采纳,获得10
1秒前
852应助科研通管家采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
xiao柒柒柒完成签到,获得积分10
2秒前
2秒前
2秒前
小鬼完成签到,获得积分10
2秒前
充电宝应助yyt采纳,获得10
3秒前
在水一方应助Mask采纳,获得10
3秒前
佳佳完成签到 ,获得积分10
3秒前
烦人完成签到,获得积分10
4秒前
Trista完成签到,获得积分10
4秒前
朴素的松鼠应助ZSQ采纳,获得10
4秒前
王饱饱完成签到 ,获得积分10
5秒前
北落发布了新的文献求助10
5秒前
无私的念文完成签到 ,获得积分10
6秒前
小垃圾10号完成签到,获得积分10
7秒前
Fareth发布了新的文献求助10
7秒前
8秒前
未来可期发布了新的文献求助10
8秒前
科研小白完成签到,获得积分10
8秒前
tanghong完成签到,获得积分10
9秒前
慕冬菱发布了新的文献求助10
9秒前
彭于彦祖应助俄歇电子采纳,获得30
10秒前
10秒前
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953576
求助须知:如何正确求助?哪些是违规求助? 3499159
关于积分的说明 11094348
捐赠科研通 3229748
什么是DOI,文献DOI怎么找? 1785744
邀请新用户注册赠送积分活动 869490
科研通“疑难数据库(出版商)”最低求助积分说明 801478