“Image-Spectral” fusion monitoring of small cotton samples nitrogen content based on improved deep forest

融合 内容(测量理论) 氮气 环境科学 图像融合 遥感 人工智能 数学 计算机科学 化学 地理 图像(数学) 语言学 数学分析 哲学 有机化学
作者
Shizhe Qin,Yiren Ding,Tailong Zhou,Mingcan Zhai,Zhenghang Zhang,Mu Fan,Xin Lv,Ze Zhang,Lifu Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:221: 109002-109002
标识
DOI:10.1016/j.compag.2024.109002
摘要

Accurate monitoring of nitrogen nutrition is crucial for improving cotton yield and quality, as well as the ecological environment. The mainstream method for monitoring nutrition is to establish traditional machine learning (ML) models using a single data source. However, this approach has limitations such as limited access to feature information, model-fitting problems, and limited generalization. Deep learning (DL), on the other hand, has shown promise in complex nonlinear modeling tasks due to its flexible structure. However, it has its limitations, such as the fact that agronomic sample collection and testing are usually labor- and material-intensive, resulting in sample sizes that are too small to meet its training conditions. Therefore, there is an urgent need for DL models that can effectively integrate features from multiple data sources and accurately monitor crop nitrogen content, especially in scenarios with small samples. In this study, we conducted indoor pot experiments using the cotton variety Xinluzao 53 and subjected it to six nitrogen treatments. The data sources for our analysis included hyperspectral and digital images of the cotton leaves. To enhance representation learning capabilities, we enriched the multi-class base learners within each layer of the deep forest (DF) model and introduced skip connections. These enhancements improved the quality of inversion for both hyperspectral and digital image datasets. We then developed image-spectral fusion models, which combined the DF structure with stacking ensemble learning. Our focus was on three levels of fusion: feature-level fusion, decision-level fusion, and secondary decision-level fusion. This approach aimed to further enhance the accuracy and stability of nitrogen content inversion. The DF model satisfied the training condition for small samples. Compared to traditional ML algorithms and the original DF algorithm, the improved DF model achieved an increase in validation set R2 of 13.4–28.5% and 10.9–14.9%, respectively. These findings highlight the enhanced accuracy and stability of the improved DF model. Additionally, compared to the optimal inversion model using two single data sources, the "Image-Spectral" three-level fusion models exhibited improvements in validation set R2 of 8.6–9.3%, 10.5–11.2%, and 11.8–12.5% for feature-level, decision-level, and secondary decision-level fusion, respectively. The improved DF and three-level fusion model collectively contributed to the increased accuracy of cotton nitrogen content inversion. Among these models, the secondary decision-level fusion model demonstrated the most marked improvement. This methodology provides valuable insights into monitoring crop phenotypic parameters in situations with limited sample sizes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zh关闭了zh文献求助
刚刚
木子木子粒完成签到 ,获得积分10
刚刚
1秒前
玛卡巴卡发布了新的文献求助10
1秒前
kzf丶bryant完成签到,获得积分10
1秒前
2秒前
2秒前
longlongzhi完成签到 ,获得积分10
3秒前
无所谓完成签到,获得积分10
3秒前
kzf丶bryant发布了新的文献求助10
3秒前
李雪松完成签到 ,获得积分10
4秒前
萍萍子发布了新的文献求助10
5秒前
Bethune124完成签到 ,获得积分10
5秒前
玩命做科研完成签到,获得积分10
6秒前
6秒前
wangxu发布了新的文献求助10
6秒前
倩倩0857完成签到,获得积分10
6秒前
7秒前
8秒前
赘婿应助愉快的甜瓜采纳,获得10
9秒前
暴走的烤包子完成签到 ,获得积分10
9秒前
落后十八完成签到,获得积分10
9秒前
活泼的狗完成签到,获得积分10
10秒前
10秒前
生动的踏歌完成签到,获得积分10
10秒前
领导范儿应助虢国国境采纳,获得10
11秒前
寄语明月发布了新的文献求助50
11秒前
上好佳完成签到,获得积分10
11秒前
12秒前
nan完成签到,获得积分10
12秒前
12秒前
踏实的惋庭完成签到,获得积分10
12秒前
Gj完成签到,获得积分10
12秒前
学术混子完成签到,获得积分10
12秒前
调皮的凝旋完成签到,获得积分10
12秒前
13秒前
阿凡达发布了新的文献求助10
13秒前
源源源完成签到 ,获得积分10
13秒前
军伊芷兰完成签到,获得积分10
14秒前
14秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167416
求助须知:如何正确求助?哪些是违规求助? 2818928
关于积分的说明 7923662
捐赠科研通 2478740
什么是DOI,文献DOI怎么找? 1320438
科研通“疑难数据库(出版商)”最低求助积分说明 632803
版权声明 602443