“Image-Spectral” fusion monitoring of small cotton samples nitrogen content based on improved deep forest

融合 内容(测量理论) 氮气 环境科学 图像融合 遥感 人工智能 数学 计算机科学 化学 地理 图像(数学) 数学分析 哲学 语言学 有机化学
作者
Shizhe Qin,Yiren Ding,Tailong Zhou,Mingcan Zhai,Zhenghang Zhang,Mu Fan,Xin Lv,Ze Zhang,Lifu Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:221: 109002-109002
标识
DOI:10.1016/j.compag.2024.109002
摘要

Accurate monitoring of nitrogen nutrition is crucial for improving cotton yield and quality, as well as the ecological environment. The mainstream method for monitoring nutrition is to establish traditional machine learning (ML) models using a single data source. However, this approach has limitations such as limited access to feature information, model-fitting problems, and limited generalization. Deep learning (DL), on the other hand, has shown promise in complex nonlinear modeling tasks due to its flexible structure. However, it has its limitations, such as the fact that agronomic sample collection and testing are usually labor- and material-intensive, resulting in sample sizes that are too small to meet its training conditions. Therefore, there is an urgent need for DL models that can effectively integrate features from multiple data sources and accurately monitor crop nitrogen content, especially in scenarios with small samples. In this study, we conducted indoor pot experiments using the cotton variety Xinluzao 53 and subjected it to six nitrogen treatments. The data sources for our analysis included hyperspectral and digital images of the cotton leaves. To enhance representation learning capabilities, we enriched the multi-class base learners within each layer of the deep forest (DF) model and introduced skip connections. These enhancements improved the quality of inversion for both hyperspectral and digital image datasets. We then developed image-spectral fusion models, which combined the DF structure with stacking ensemble learning. Our focus was on three levels of fusion: feature-level fusion, decision-level fusion, and secondary decision-level fusion. This approach aimed to further enhance the accuracy and stability of nitrogen content inversion. The DF model satisfied the training condition for small samples. Compared to traditional ML algorithms and the original DF algorithm, the improved DF model achieved an increase in validation set R2 of 13.4–28.5% and 10.9–14.9%, respectively. These findings highlight the enhanced accuracy and stability of the improved DF model. Additionally, compared to the optimal inversion model using two single data sources, the "Image-Spectral" three-level fusion models exhibited improvements in validation set R2 of 8.6–9.3%, 10.5–11.2%, and 11.8–12.5% for feature-level, decision-level, and secondary decision-level fusion, respectively. The improved DF and three-level fusion model collectively contributed to the increased accuracy of cotton nitrogen content inversion. Among these models, the secondary decision-level fusion model demonstrated the most marked improvement. This methodology provides valuable insights into monitoring crop phenotypic parameters in situations with limited sample sizes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
柳七发布了新的文献求助10
1秒前
迟大猫应助111123123123采纳,获得10
1秒前
香蕉觅云应助子俞采纳,获得10
1秒前
玛卡巴卡完成签到,获得积分10
2秒前
Grayball应助科研小白采纳,获得10
2秒前
阳光完成签到,获得积分10
2秒前
duan完成签到,获得积分10
2秒前
7777777发布了新的文献求助10
2秒前
朴素篮球完成签到,获得积分10
3秒前
清辉月凝完成签到,获得积分10
4秒前
Barry完成签到,获得积分10
4秒前
枫叶完成签到 ,获得积分10
4秒前
英姑应助桶桶要好好学习采纳,获得10
4秒前
5秒前
不辞完成签到,获得积分10
5秒前
ry发布了新的文献求助10
5秒前
song完成签到,获得积分10
5秒前
明亮无颜完成签到,获得积分10
5秒前
6秒前
6秒前
小慈爱鸡完成签到 ,获得积分10
6秒前
6秒前
英俊的铭应助麻麻采纳,获得10
6秒前
97b1完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
羊羊羊发布了新的文献求助30
8秒前
9秒前
9秒前
再沉默完成签到,获得积分10
10秒前
10秒前
10秒前
明亮无颜发布了新的文献求助20
11秒前
11秒前
谁还没有个生活完成签到,获得积分10
11秒前
Feng发布了新的文献求助10
11秒前
zzz发布了新的文献求助10
11秒前
MailkMonk发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678