亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

“Image-Spectral” fusion monitoring of small cotton samples nitrogen content based on improved deep forest

融合 内容(测量理论) 氮气 环境科学 图像融合 遥感 人工智能 数学 计算机科学 化学 地理 图像(数学) 数学分析 哲学 语言学 有机化学
作者
Shizhe Qin,Yiren Ding,Tailong Zhou,Mingcan Zhai,Zhenghang Zhang,Mu Fan,Xin Lv,Ze Zhang,Lifu Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:221: 109002-109002
标识
DOI:10.1016/j.compag.2024.109002
摘要

Accurate monitoring of nitrogen nutrition is crucial for improving cotton yield and quality, as well as the ecological environment. The mainstream method for monitoring nutrition is to establish traditional machine learning (ML) models using a single data source. However, this approach has limitations such as limited access to feature information, model-fitting problems, and limited generalization. Deep learning (DL), on the other hand, has shown promise in complex nonlinear modeling tasks due to its flexible structure. However, it has its limitations, such as the fact that agronomic sample collection and testing are usually labor- and material-intensive, resulting in sample sizes that are too small to meet its training conditions. Therefore, there is an urgent need for DL models that can effectively integrate features from multiple data sources and accurately monitor crop nitrogen content, especially in scenarios with small samples. In this study, we conducted indoor pot experiments using the cotton variety Xinluzao 53 and subjected it to six nitrogen treatments. The data sources for our analysis included hyperspectral and digital images of the cotton leaves. To enhance representation learning capabilities, we enriched the multi-class base learners within each layer of the deep forest (DF) model and introduced skip connections. These enhancements improved the quality of inversion for both hyperspectral and digital image datasets. We then developed image-spectral fusion models, which combined the DF structure with stacking ensemble learning. Our focus was on three levels of fusion: feature-level fusion, decision-level fusion, and secondary decision-level fusion. This approach aimed to further enhance the accuracy and stability of nitrogen content inversion. The DF model satisfied the training condition for small samples. Compared to traditional ML algorithms and the original DF algorithm, the improved DF model achieved an increase in validation set R2 of 13.4–28.5% and 10.9–14.9%, respectively. These findings highlight the enhanced accuracy and stability of the improved DF model. Additionally, compared to the optimal inversion model using two single data sources, the "Image-Spectral" three-level fusion models exhibited improvements in validation set R2 of 8.6–9.3%, 10.5–11.2%, and 11.8–12.5% for feature-level, decision-level, and secondary decision-level fusion, respectively. The improved DF and three-level fusion model collectively contributed to the increased accuracy of cotton nitrogen content inversion. Among these models, the secondary decision-level fusion model demonstrated the most marked improvement. This methodology provides valuable insights into monitoring crop phenotypic parameters in situations with limited sample sizes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
15秒前
sissiarno完成签到,获得积分0
31秒前
36秒前
Chloe应助科研通管家采纳,获得10
1分钟前
1分钟前
黄玉发布了新的文献求助10
1分钟前
黄玉完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
yipmyonphu应助危机的慕卉采纳,获得10
3分钟前
昏睡的世倌完成签到,获得积分20
3分钟前
Chloe应助科研通管家采纳,获得10
3分钟前
Yini应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
星辰大海应助Jimeng采纳,获得10
4分钟前
4分钟前
荼蘼发布了新的文献求助10
4分钟前
李健应助TingtingGZ采纳,获得10
4分钟前
情怀应助荼蘼采纳,获得10
4分钟前
耶斯发布了新的文献求助10
4分钟前
4分钟前
TingtingGZ发布了新的文献求助10
4分钟前
荼蘼完成签到,获得积分20
4分钟前
汉堡包应助耶斯采纳,获得10
4分钟前
科研通AI5应助科研通管家采纳,获得10
5分钟前
Chloe应助科研通管家采纳,获得10
5分钟前
5分钟前
十三发布了新的文献求助10
6分钟前
城南花已开完成签到,获得积分10
6分钟前
科研通AI5应助十三采纳,获得30
6分钟前
花花完成签到 ,获得积分10
6分钟前
十三完成签到,获得积分20
6分钟前
火星上的博涛完成签到,获得积分20
6分钟前
穆振家完成签到,获得积分10
6分钟前
king完成签到 ,获得积分10
7分钟前
上官若男应助科研通管家采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4900752
求助须知:如何正确求助?哪些是违规求助? 4180509
关于积分的说明 12976917
捐赠科研通 3945289
什么是DOI,文献DOI怎么找? 2164035
邀请新用户注册赠送积分活动 1182326
关于科研通互助平台的介绍 1088563