衰老
程序性细胞死亡
氧化应激
PARP1
细胞生物学
聚ADP核糖聚合酶
线粒体
细胞凋亡
生物
活性氧
细胞
坏死
癌症研究
聚合酶
生物化学
遗传学
基因
作者
Jamil Nehme,Lina Mesilmany,Marta Varela-Eirín,Simone Brandenburg,Abdullah Altulea,Yao Lin,Mariana Gaya da Costa,Marc A. Seelen,Jan‐Luuk Hillebrands,Harry van Goor,Raya Saab,Haidar Akl,Natalia Prevarskaya,Valério Farfariello,Marco Demaria
出处
期刊:Nature Aging
日期:2024-05-09
卷期号:4 (6): 771-782
被引量:2
标识
DOI:10.1038/s43587-024-00627-x
摘要
Excessive amounts of reactive oxygen species (ROS) lead to macromolecular damage and high levels of cell death with consequent pathological sequelae. We hypothesized that switching cell death to a tissue regenerative state could potentially improve the short-term and long-term detrimental effects of ROS-associated acute tissue injury, although the mechanisms regulating oxidative stress-induced cell fate decisions and their manipulation for improving repair are poorly understood. Here, we show that cells exposed to high oxidative stress enter a poly (ADP-ribose) polymerase 1 (PARP1)-mediated regulated cell death, and that blocking PARP1 activation promotes conversion of cell death into senescence (CODIS). We demonstrate that this conversion depends on reducing mitochondrial Ca2+ overload as a consequence of retaining the hexokinase II on mitochondria. In a mouse model of kidney ischemia–reperfusion damage, PARP inhibition reduces necrosis and increases transient senescence at the injury site, alongside improved recovery from damage. Together, these data provide evidence that converting cell death into transient senescence can therapeutically benefit tissue regeneration. Cellular senescence is a hallmark of aging but also a potent tissue remodeling process. Here, Nehme et al. show that modulating poly (ADP-ribose) polymerase 1 can switch cell death into senescence, and that inducing senescence improves recovery from kidney ischemia–reperfusion injury.
科研通智能强力驱动
Strongly Powered by AbleSci AI