嵌合抗原受体
免疫系统
医学
免疫学
造血干细胞移植
人类免疫缺陷病毒(HIV)
T细胞
移植
抗原
病毒学
内科学
作者
Hang Su,Amber L. Mueller,Harris Goldstein
出处
期刊:Current Opinion in Hiv and Aids
[Ovid Technologies (Wolters Kluwer)]
日期:2024-05-02
标识
DOI:10.1097/coh.0000000000000858
摘要
Purpose of review Successful sustained remission of HIV infection has been achieved after CCR5Δ32/Δ32 allogeneic hematopoietic stem cell transplantation for treatment of leukemia in a small cohort of people living with HIV (PLWH). This breakthrough demonstrated that the goal of curing HIV was achievable. However, the high morbidity and mortality associated with bone marrow transplantation limits the routine application of this approach and provides a strong rationale for pursuing alternative strategies for sustained long-term antiretroviral therapy (ART)-free HIV remission. Notably, long-term immune-mediated control of HIV replication observed in elite controllers and posttreatment controllers suggests that potent HIV-specific immune responses could provide sustained ART-free remission in PLWH. The capacity of chimeric antigen receptor (CAR)-T cells engineered to target malignant cells to induce remission and cure in cancer patients made this an attractive approach to provide PLWH with a potent HIV-specific immune response. Here, we review the recent advances in the design and application of anti-HIV CAR-T-cell therapy to provide a functional HIV cure. Recent findings HIV reservoirs are established days after infection and persist through clonal expansion of infected cells. The continuous interaction between latently infected cells and the immune system shapes the landscape of HIV latency and likely contributes to ART-free viral control in elite controllers. CAR-T cells can exhibit superior antiviral activity as compared with native HIV-specific T cells, particularly because they can be engineered to have multiple HIV specificities, resistance to HIV infection, dual costimulatory signaling, immune checkpoint inhibitors, stem cell derivation, CMV TCR coexpression, and tissue homing ligands. These modifications can significantly improve the capacities of anti-HIV CAR-T cells to prevent viral escape, resist HIV infection, and enhance cytotoxicity, persistence, and tissue penetration. Collectively, these novel modifications of anti-HIV CAR-T cell design have increased their capacity to control HIV infection. Summary Anti-HIV CAR-T cells can be engineered to provide potent and sustained in-vitro and in-vivo antiviral function. The combination of anti-HIV CAR-T cells with other immunotherapeutics may contribute to long-term HIV remission in PLWH.
科研通智能强力驱动
Strongly Powered by AbleSci AI