A Hybrid Deep Learning-Based Framework for Chip Packaging Fault Diagnostics in X-Ray Images

人工智能 稳健性(进化) 计算机科学 规范化(社会学) 炸薯条 计算机视觉 分割 模板匹配 模式识别(心理学) 故障检测与隔离 图像分割 深度学习 图像(数学) 执行机构 电信 生物化学 化学 社会学 人类学 基因
作者
Jie Wang,Gaomin Li,Haoyu Bai,Guixin Yuan,Xuan Li,Bin Lin,Lijun Zhong,Xiaohu Zhang
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (9): 11181-11191 被引量:7
标识
DOI:10.1109/tii.2024.3397360
摘要

In the testing of chips, defect diagnostics in X-ray images of packaging chips is mainly performed by humans, which is time-consuming and inefficient. To overcome the abovementioned problems, a novel intelligent defect diagnostics system based on hybrid deep learning for chip X-ray images was proposed. The system consists of four successive stages: image segmentation and normalization, image reconstruction and defect detection, contour matching, and qualification diagnosis. The first stage is used to localize the external contours of the target chip and remove extraneous backgrounds through the improved UNet. Then, considering the variety of defects and the complexity of labeling, an unsupervised learning model is designed to reconstruct defect-free images to detect defects, which requires only normal samples for training. Third, the multicomponent template matching based on structural prior is used to localize the internal contours of the chip. In the final stage, the qualification is diagnosed based on the previous results through the Floyd–Warshall algorithm. The effectiveness and robustness of the proposed methods are verified by experiments on real-world inspection lines. The experimental results demonstrate that the developed system can successfully perform fault diagnostics tasks, achieving a judgment accuracy of 92.5%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
tsq发布了新的文献求助10
2秒前
11完成签到 ,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
酷波er应助动听元彤采纳,获得10
2秒前
文文发布了新的文献求助10
3秒前
MY完成签到,获得积分10
4秒前
完美世界应助殷勤的岱周采纳,获得30
5秒前
弹幕发布了新的文献求助10
7秒前
应文俊发布了新的文献求助10
7秒前
8秒前
8秒前
Hello应助tsq采纳,获得10
9秒前
Marciu33发布了新的文献求助10
10秒前
10秒前
橙子味汽水完成签到,获得积分20
11秒前
萧东辰完成签到,获得积分10
11秒前
柚子完成签到,获得积分10
12秒前
应文俊完成签到,获得积分10
13秒前
13秒前
15秒前
研友_8DoPDZ完成签到,获得积分0
15秒前
KSDalton完成签到,获得积分10
17秒前
17秒前
文文完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
18秒前
20秒前
michen发布了新的文献求助10
20秒前
20秒前
21秒前
风清扬发布了新的文献求助10
21秒前
李爱国应助弹幕采纳,获得10
21秒前
fribbleeee发布了新的文献求助10
22秒前
22秒前
Honor完成签到,获得积分20
22秒前
suliang发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675445
求助须知:如何正确求助?哪些是违规求助? 4946851
关于积分的说明 15153495
捐赠科研通 4834824
什么是DOI,文献DOI怎么找? 2589661
邀请新用户注册赠送积分活动 1543377
关于科研通互助平台的介绍 1501192