A Hybrid Deep Learning-Based Framework for Chip Packaging Fault Diagnostics in X-Ray Images

人工智能 稳健性(进化) 计算机科学 规范化(社会学) 炸薯条 计算机视觉 分割 模板匹配 模式识别(心理学) 故障检测与隔离 图像分割 深度学习 图像(数学) 执行机构 电信 生物化学 化学 社会学 人类学 基因
作者
Jie Wang,Gaomin Li,Haoyu Bai,Guixin Yuan,Xuan Li,Bin Lin,Lijun Zhong,Xiaohu Zhang
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (9): 11181-11191 被引量:7
标识
DOI:10.1109/tii.2024.3397360
摘要

In the testing of chips, defect diagnostics in X-ray images of packaging chips is mainly performed by humans, which is time-consuming and inefficient. To overcome the abovementioned problems, a novel intelligent defect diagnostics system based on hybrid deep learning for chip X-ray images was proposed. The system consists of four successive stages: image segmentation and normalization, image reconstruction and defect detection, contour matching, and qualification diagnosis. The first stage is used to localize the external contours of the target chip and remove extraneous backgrounds through the improved UNet. Then, considering the variety of defects and the complexity of labeling, an unsupervised learning model is designed to reconstruct defect-free images to detect defects, which requires only normal samples for training. Third, the multicomponent template matching based on structural prior is used to localize the internal contours of the chip. In the final stage, the qualification is diagnosed based on the previous results through the Floyd–Warshall algorithm. The effectiveness and robustness of the proposed methods are verified by experiments on real-world inspection lines. The experimental results demonstrate that the developed system can successfully perform fault diagnostics tasks, achieving a judgment accuracy of 92.5%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
华仔应助星期一采纳,获得10
1秒前
2秒前
深情安青应助YY采纳,获得30
2秒前
ZZ完成签到,获得积分10
2秒前
4秒前
4秒前
凌风发布了新的文献求助10
5秒前
6秒前
6秒前
SciGPT应助辣椒油油采纳,获得30
6秒前
7秒前
酷波er应助沉默的板凳采纳,获得10
7秒前
sciscisci完成签到 ,获得积分10
7秒前
7秒前
zyz发布了新的文献求助10
8秒前
10秒前
畑畑发布了新的文献求助30
12秒前
王小小发布了新的文献求助10
12秒前
12秒前
林佳一完成签到,获得积分10
13秒前
YY发布了新的文献求助30
13秒前
布布完成签到,获得积分10
13秒前
勤奋的球球完成签到,获得积分20
17秒前
青馨花语发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助20
19秒前
充电宝应助hl采纳,获得10
19秒前
Ava应助wangjue采纳,获得10
20秒前
踏实含之发布了新的文献求助20
21秒前
23秒前
24秒前
亨先生发布了新的文献求助30
25秒前
彩色的平露完成签到,获得积分10
26秒前
辣椒油油发布了新的文献求助30
26秒前
狂野风华完成签到 ,获得积分10
29秒前
俭朴晓凡完成签到,获得积分20
30秒前
31秒前
32秒前
33秒前
浮游应助舒适静丹采纳,获得10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5553289
求助须知:如何正确求助?哪些是违规求助? 4637819
关于积分的说明 14651261
捐赠科研通 4579708
什么是DOI,文献DOI怎么找? 2511828
邀请新用户注册赠送积分活动 1486770
关于科研通互助平台的介绍 1457694