A Hybrid Deep Learning-Based Framework for Chip Packaging Fault Diagnostics in X-Ray Images

人工智能 稳健性(进化) 计算机科学 规范化(社会学) 炸薯条 计算机视觉 分割 模板匹配 模式识别(心理学) 故障检测与隔离 图像分割 深度学习 图像(数学) 执行机构 电信 生物化学 化学 社会学 人类学 基因
作者
Jie Wang,Gaomin Li,Haoyu Bai,Guixin Yuan,Xuan Li,Bin Lin,Lijun Zhong,Xiaohu Zhang
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (9): 11181-11191
标识
DOI:10.1109/tii.2024.3397360
摘要

In the testing of chips, defect diagnostics in X-ray images of packaging chips is mainly performed by humans, which is time-consuming and inefficient. To overcome the abovementioned problems, a novel intelligent defect diagnostics system based on hybrid deep learning for chip X-ray images was proposed. The system consists of four successive stages: image segmentation and normalization, image reconstruction and defect detection, contour matching, and qualification diagnosis. The first stage is used to localize the external contours of the target chip and remove extraneous backgrounds through the improved UNet. Then, considering the variety of defects and the complexity of labeling, an unsupervised learning model is designed to reconstruct defect-free images to detect defects, which requires only normal samples for training. Third, the multicomponent template matching based on structural prior is used to localize the internal contours of the chip. In the final stage, the qualification is diagnosed based on the previous results through the Floyd–Warshall algorithm. The effectiveness and robustness of the proposed methods are verified by experiments on real-world inspection lines. The experimental results demonstrate that the developed system can successfully perform fault diagnostics tasks, achieving a judgment accuracy of 92.5%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
handan完成签到,获得积分10
刚刚
姽婳wy发布了新的文献求助10
1秒前
minnom完成签到 ,获得积分10
1秒前
QWE发布了新的文献求助20
1秒前
1秒前
单薄惜文发布了新的文献求助10
1秒前
杳鸢应助Slush采纳,获得10
2秒前
2秒前
2秒前
叶子发布了新的文献求助10
2秒前
3秒前
SciGPT应助mitty采纳,获得10
3秒前
4秒前
辣椒酱完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
5秒前
6秒前
6秒前
mnjknm发布了新的文献求助10
6秒前
刀英俊完成签到,获得积分10
6秒前
7秒前
7秒前
passionate发布了新的文献求助10
7秒前
7秒前
8秒前
123发布了新的文献求助10
8秒前
神勇秋白完成签到,获得积分0
8秒前
8秒前
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
华仔应助科研通管家采纳,获得10
9秒前
李健应助科研通管家采纳,获得10
10秒前
顾矜应助科研通管家采纳,获得10
10秒前
慕青应助科研通管家采纳,获得10
10秒前
NexusExplorer应助科研通管家采纳,获得30
10秒前
淡定枕头应助科研通管家采纳,获得10
10秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3227246
求助须知:如何正确求助?哪些是违规求助? 2875383
关于积分的说明 8190527
捐赠科研通 2542584
什么是DOI,文献DOI怎么找? 1372834
科研通“疑难数据库(出版商)”最低求助积分说明 646561
邀请新用户注册赠送积分活动 620994