亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Hybrid Deep Learning-Based Framework for Chip Packaging Fault Diagnostics in X-Ray Images

人工智能 稳健性(进化) 计算机科学 规范化(社会学) 炸薯条 计算机视觉 分割 模板匹配 模式识别(心理学) 故障检测与隔离 图像分割 深度学习 图像(数学) 执行机构 电信 生物化学 化学 社会学 人类学 基因
作者
Jie Wang,Gaomin Li,Haoyu Bai,Guixin Yuan,Xuan Li,Bin Lin,Lijun Zhong,Xiaohu Zhang
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (9): 11181-11191 被引量:7
标识
DOI:10.1109/tii.2024.3397360
摘要

In the testing of chips, defect diagnostics in X-ray images of packaging chips is mainly performed by humans, which is time-consuming and inefficient. To overcome the abovementioned problems, a novel intelligent defect diagnostics system based on hybrid deep learning for chip X-ray images was proposed. The system consists of four successive stages: image segmentation and normalization, image reconstruction and defect detection, contour matching, and qualification diagnosis. The first stage is used to localize the external contours of the target chip and remove extraneous backgrounds through the improved UNet. Then, considering the variety of defects and the complexity of labeling, an unsupervised learning model is designed to reconstruct defect-free images to detect defects, which requires only normal samples for training. Third, the multicomponent template matching based on structural prior is used to localize the internal contours of the chip. In the final stage, the qualification is diagnosed based on the previous results through the Floyd–Warshall algorithm. The effectiveness and robustness of the proposed methods are verified by experiments on real-world inspection lines. The experimental results demonstrate that the developed system can successfully perform fault diagnostics tasks, achieving a judgment accuracy of 92.5%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
方汀应助朴素海亦采纳,获得10
33秒前
1分钟前
dd完成签到,获得积分10
1分钟前
1分钟前
开朗大雁完成签到 ,获得积分10
1分钟前
香蕉觅云应助科研通管家采纳,获得10
1分钟前
荷兰香猪完成签到,获得积分10
1分钟前
2分钟前
2分钟前
阳光的星月完成签到,获得积分10
2分钟前
研友_8RyzBZ完成签到,获得积分20
2分钟前
2分钟前
2分钟前
huahuaaixuexi完成签到,获得积分10
2分钟前
2分钟前
情怀应助成成鹅了采纳,获得10
2分钟前
苗龙伟完成签到 ,获得积分10
2分钟前
dd发布了新的文献求助200
2分钟前
852应助成成鹅了采纳,获得30
2分钟前
林妹妹完成签到 ,获得积分10
2分钟前
zsmj23完成签到 ,获得积分0
3分钟前
3分钟前
冷酷的如松完成签到,获得积分10
3分钟前
3分钟前
成成鹅了发布了新的文献求助10
3分钟前
3分钟前
3分钟前
丘比特应助科研通管家采纳,获得30
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
成成鹅了发布了新的文献求助30
3分钟前
LX1005完成签到,获得积分10
3分钟前
4分钟前
4分钟前
Orange应助成成鹅了采纳,获得10
5分钟前
5分钟前
5分钟前
乐乐应助成成鹅了采纳,获得10
5分钟前
正直的小蚂蚁完成签到 ,获得积分10
6分钟前
方森岩完成签到,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634903
求助须知:如何正确求助?哪些是违规求助? 4734139
关于积分的说明 14989445
捐赠科研通 4792634
什么是DOI,文献DOI怎么找? 2559723
邀请新用户注册赠送积分活动 1520035
关于科研通互助平台的介绍 1480107