A Hybrid Deep Learning-Based Framework for Chip Packaging Fault Diagnostics in X-Ray Images

人工智能 稳健性(进化) 计算机科学 规范化(社会学) 炸薯条 计算机视觉 分割 模板匹配 模式识别(心理学) 故障检测与隔离 图像分割 深度学习 图像(数学) 执行机构 电信 生物化学 化学 社会学 人类学 基因
作者
Jie Wang,Gaomin Li,Haoyu Bai,Guixin Yuan,Xuan Li,Bin Lin,Lijun Zhong,Xiaohu Zhang
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (9): 11181-11191 被引量:7
标识
DOI:10.1109/tii.2024.3397360
摘要

In the testing of chips, defect diagnostics in X-ray images of packaging chips is mainly performed by humans, which is time-consuming and inefficient. To overcome the abovementioned problems, a novel intelligent defect diagnostics system based on hybrid deep learning for chip X-ray images was proposed. The system consists of four successive stages: image segmentation and normalization, image reconstruction and defect detection, contour matching, and qualification diagnosis. The first stage is used to localize the external contours of the target chip and remove extraneous backgrounds through the improved UNet. Then, considering the variety of defects and the complexity of labeling, an unsupervised learning model is designed to reconstruct defect-free images to detect defects, which requires only normal samples for training. Third, the multicomponent template matching based on structural prior is used to localize the internal contours of the chip. In the final stage, the qualification is diagnosed based on the previous results through the Floyd–Warshall algorithm. The effectiveness and robustness of the proposed methods are verified by experiments on real-world inspection lines. The experimental results demonstrate that the developed system can successfully perform fault diagnostics tasks, achieving a judgment accuracy of 92.5%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
曲书文完成签到,获得积分10
2秒前
hzx发布了新的文献求助10
2秒前
cpsggg完成签到,获得积分20
3秒前
纸柒完成签到,获得积分10
5秒前
帅气火发布了新的文献求助10
5秒前
5秒前
曲书文发布了新的文献求助10
6秒前
Bazinga发布了新的文献求助10
6秒前
6秒前
丘比特应助倩Q采纳,获得10
7秒前
小鲨鱼发布了新的文献求助10
8秒前
hzx完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
邱壮子发布了新的文献求助10
9秒前
fangyuan应助沉默的幻枫采纳,获得10
10秒前
10秒前
酷波er应助仲谋采纳,获得10
11秒前
sjr123完成签到,获得积分10
11秒前
12秒前
hellosci666完成签到,获得积分10
13秒前
淡淡发布了新的文献求助10
13秒前
Tang完成签到,获得积分10
13秒前
sjr123发布了新的文献求助10
14秒前
14秒前
lee发布了新的文献求助10
14秒前
执着的若翠完成签到,获得积分10
15秒前
畅学天下完成签到,获得积分10
17秒前
17秒前
18秒前
19秒前
Geass发布了新的文献求助10
19秒前
vickyyy发布了新的文献求助50
19秒前
lcc应助搞怪的寄灵采纳,获得10
19秒前
20秒前
Aixx完成签到 ,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679587
求助须知:如何正确求助?哪些是违规求助? 4991903
关于积分的说明 15170108
捐赠科研通 4839414
什么是DOI,文献DOI怎么找? 2593318
邀请新用户注册赠送积分活动 1546447
关于科研通互助平台的介绍 1504572