Multilevel Knowledge Transmission for Object Detection in Rainy Night Weather Conditions

子网 计算机科学 目标检测 卷积神经网络 人工智能 模式识别(心理学) 传输(电信) Boosting(机器学习) 特征提取 数据挖掘 电信 计算机网络
作者
Trung-Hieu Le,Shih-Chia Huang,Quoc-Viet Hoang
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (9): 11224-11232
标识
DOI:10.1109/tii.2024.3396552
摘要

In recent years, deep convolutional neural networks (CNNs) have been widely applied and have gained considerable success in object detection (OD). However, most of the CNN-based object detectors have been developed to operate under favorable weather conditions, limiting their ability to accurately detect objects in rainy nighttime (RNT) scenes, thereby resulting in low performance. In this work, we introduce a multilevel knowledge transmission network (MKT-Net) to overcome the challenges of detecting objects with the interference of rain and night. Our proposed model accomplishes this objective by collaborating OD with rain removal (RR) and low-illumination enhancement (LE) tasks. Specifically, the MKT-Net is composed of three main subnetworks that share some shallow layers with each other: an OD subnetwork for performing object classification and localization, an RR subnetwork, and an LE subnetwork for generating clear features. To aggregate and transmit multiscale features generated by the RR and LE subnetworks to the OD subnetwork for boosting detection accuracy, we introduce two feature transmission modules with identical architectures. Extensive evaluation on various datasets has demonstrated the effectiveness of our proposed model, which outperformed competing methods by up to 25.43% and 15.26% in mean average precision on a collected RNT dataset and the published rain in driving dataset, respectively, while maintaining high detection speed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
zheding发布了新的文献求助10
2秒前
科研通AI5应助纯真穆采纳,获得10
3秒前
5秒前
you发布了新的文献求助10
5秒前
明亮小凡完成签到 ,获得积分10
5秒前
咚咚咚完成签到,获得积分10
5秒前
6秒前
6秒前
7秒前
科研通AI5应助zzznznnn采纳,获得10
9秒前
七月发布了新的文献求助10
11秒前
blooming发布了新的文献求助10
11秒前
12秒前
Colin完成签到,获得积分10
13秒前
SYLH应助乐枳采纳,获得10
13秒前
Ruler发布了新的文献求助10
13秒前
可爱的函函应助愉快彩虹采纳,获得10
14秒前
Lm发布了新的文献求助10
14秒前
15秒前
luori217完成签到,获得积分10
16秒前
脑洞疼应助称心的乘云采纳,获得10
18秒前
共享精神应助CATH采纳,获得10
18秒前
qingkong发布了新的文献求助10
18秒前
天天快乐应助momomo采纳,获得10
18秒前
zcg发布了新的文献求助10
18秒前
20秒前
zhangfugui应助资白玉采纳,获得10
20秒前
20秒前
CHENJIRU发布了新的文献求助10
21秒前
23秒前
华仔应助周至采纳,获得10
23秒前
李爱国应助yuyu采纳,获得10
23秒前
絮甯发布了新的文献求助10
24秒前
1434683426完成签到 ,获得积分10
25秒前
26秒前
小蘑菇应助Lm采纳,获得10
26秒前
26秒前
zzznznnn发布了新的文献求助10
26秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736207
求助须知:如何正确求助?哪些是违规求助? 3279988
关于积分的说明 10017941
捐赠科研通 2996592
什么是DOI,文献DOI怎么找? 1644198
邀请新用户注册赠送积分活动 781831
科研通“疑难数据库(出版商)”最低求助积分说明 749491