材料科学
聚合物
碳纤维
高分子科学
阻燃剂
纳米技术
复合材料
复合数
作者
Guan Heng Yeoh,Ivan Miguel De Cachinho Cordeiro,Wei Wang,Cheng Wang,Anthony Chun Yin Yuen,Timothy Bo Yuan Chen,Juan Baena Vargas,Guangzhao Mao,Ulf Garbe,Hui Tong Chua
标识
DOI:10.1002/adma.202403835
摘要
Abstract This state‐of‐the‐art review is geared toward elucidating the molecular understanding of the carbon‐based flame‐retardant mechanisms for polymers via holistic characterization combining detailed analytical assessments and computational material science. The use of carbon‐based flame retardants, which include graphite, graphene, carbon nanotubes (CNTs), carbon dots (CDs), and fullerenes, in their pure and functionalized forms are initially reviewed to evaluate their flame retardancy performance and to determine their elevation of the flammability resistance on various types of polymers. The early transition metal carbides such as MXenes, regarded as next‐generation carbon‐based flame retardants, are discussed with respect to their superior flame retardancy and multifunctional applications. At the core of this review is the utilization of cutting‐edge molecular dynamics (MD) simulations which sets a precedence of an alternative bottom‐up approach to fill the knowledge gap through insights into the thermal resisting process of the carbon‐based flame retardants, such as the formation of carbonaceous char and intermediate chemical reactions offered by the unique carbon bonding arrangements and microscopic in‐situ architectures. Combining MD simulations with detailed experimental assessments and characterization, a more targeted development as well as a systematic material synthesis framework can be realized for the future development of advanced flame‐retardant polymers.
科研通智能强力驱动
Strongly Powered by AbleSci AI