ELIM: Extremely Low-Complexity Implicit Neural Model for Super Resolution-Based Coding

计算机科学 编码(社会科学) 低分辨率 算法 分辨率(逻辑) 人工智能 高分辨率 数学 地质学 统计 遥感
作者
Wenyu Wang,Junjie Wang,Dandan Ding,Urvang Joshi,Debargha Mukherjee
标识
DOI:10.1109/pcs60826.2024.10566385
摘要

The super-resolution (SR)-based coding, which encodes a frame at a reduced resolution to achieve a lower bitrate, is a prevalent tool used in modern video coding standards. Accordingly, the low-resolution frame is restored to the full resolution at the reconstruction stage for subsequent reference. Therefore, the resolution restoration algorithm significantly affects the coding performance. This paper devises a highly efficient and extremely low complexity implicit neural model (ELIM) for SR-based encoding to support arbitrary scale factors. Specifically, ELIM consists of two stages: Feature Aggregation and Coordinate Upsampling. In Feature Aggregation, we embed a simplified attention block to the U-Net style framework to collect valuable information while reducing computational complexity through downsampling. In Coordinate Upsampling, in addition to the extracted content features, information including coordinate relative location and pixel cell size is fused to achieve better performance. We exemplify ELIM on the AV2 codec (the next generation of AV1). Extensive experiments demonstrate its superior performance: it achieves 4.17% BD-Rate gains over the anchor AV2 reference software with only 5,185 flops/pixel, significantly surpassing existing methods. The low complexity of ELIM is attractive to real applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
3秒前
4秒前
11完成签到,获得积分10
5秒前
NexusExplorer应助林林总总采纳,获得10
5秒前
6秒前
6秒前
6秒前
wangshuyan发布了新的文献求助10
7秒前
mm发布了新的文献求助10
8秒前
Mortal发布了新的文献求助10
9秒前
9秒前
11发布了新的文献求助20
9秒前
摇匀发布了新的文献求助10
10秒前
10秒前
jade应助读研顺利采纳,获得10
11秒前
Sunshine发布了新的文献求助10
13秒前
13秒前
熊二完成签到 ,获得积分10
14秒前
清脆的凝竹完成签到,获得积分10
15秒前
pan123完成签到,获得积分20
18秒前
18秒前
18秒前
wangshuyan完成签到,获得积分10
19秒前
大哥大姐帮帮忙完成签到,获得积分10
20秒前
苹果雁易发布了新的文献求助10
21秒前
英俊的铭应助科研通管家采纳,获得10
23秒前
Jasper应助科研通管家采纳,获得10
23秒前
Lucas应助科研通管家采纳,获得10
23秒前
英俊的铭应助科研通管家采纳,获得10
23秒前
NexusExplorer应助科研通管家采纳,获得10
23秒前
深情安青应助科研通管家采纳,获得10
23秒前
小蘑菇应助科研通管家采纳,获得10
23秒前
华仔应助科研通管家采纳,获得10
23秒前
Ganlou应助科研通管家采纳,获得10
23秒前
23秒前
天天快乐应助科研通管家采纳,获得10
23秒前
小二郎应助科研通管家采纳,获得10
23秒前
pluto应助科研通管家采纳,获得10
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 400
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3292679
求助须知:如何正确求助?哪些是违规求助? 2928963
关于积分的说明 8439431
捐赠科研通 2601082
什么是DOI,文献DOI怎么找? 1419525
科研通“疑难数据库(出版商)”最低求助积分说明 660310
邀请新用户注册赠送积分活动 642969