DFT and experimental study on the heterogeneous decomposition and steam/CO2 reforming of gasification tar over bio-char

烧焦 tar(计算) 甲苯 分解 化学工程 热解 化学 有机化学 计算机科学 工程类 程序设计语言
作者
Shanhui Zhao,Yunliang Zhang
出处
期刊:Fuel [Elsevier]
卷期号:335: 126966-126966
标识
DOI:10.1016/j.fuel.2022.126966
摘要

Tar decomposition/reforming over char surface is a hot topic for biomass gasification. In this work, heterogeneous decomposition and steam/CO2 reforming of gasification tar over bio-char were studied using experiment and density functional theory (DFT) approaches. The detailed mechanism focusing on the intrinsic char-tar interaction at molecular level was taken into consideration. Experimental results show that bio-char largely enhanced the decomposition of toluene. Meanwhile, the removal efficiency declined with duration time as a result of carbon deposition. Steam/CO2 reforming improved toluene decomposition efficiency by maintaining the activity of bio-char. At 900 °C, the toluene conversion efficiency maintained nearly 100 % throughout the process. DFT calculation indicates that the energy barriers for hydrogen dissociation reactions of toluene over char surface is about 235.52 kJ/mole, which is much lower than thermal decomposition. Char-toluene interaction benefits the dehydrogenation reaction rather than demethylation·H2O/CO2 could quick combine with char surface to inhibit carbon deposition. The energy barriers for formation of active phenoxy structure during steam and CO2 reforming are 261.04 kJ/mole (phO-H breakage) and 19.1 kJ/mole (O…CO breakage) respectively, which indicates that CO2 reforming of toluene over bio-char is more conducive to elimination of carbon deposition. Orbital electron properties results show that when adsorbed on char surface, the band gap of chemisorption system is reduced to 3.2622 eV, which is much lower than toluene (6.7179 eV). The orbital electron interaction greatly reduces the stability of tar molecules, which is the essence for the catalysis and activation effect of bio-char for toluene dehydrogenation and decomposition.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助Yuan88采纳,获得10
1秒前
有魅力老三完成签到,获得积分10
1秒前
enmnm完成签到,获得积分10
1秒前
李健应助霍师傅采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
周苗发布了新的文献求助10
3秒前
Katze发布了新的文献求助10
4秒前
小苏发布了新的文献求助10
4秒前
研友_LwlRen完成签到 ,获得积分10
5秒前
5秒前
解语花发布了新的文献求助10
5秒前
5秒前
Wen发布了新的文献求助10
5秒前
芽芽完成签到,获得积分10
5秒前
小P完成签到,获得积分10
6秒前
Janson发布了新的文献求助10
6秒前
nn应助276868sxzz采纳,获得10
6秒前
6秒前
7秒前
linya发布了新的文献求助10
8秒前
9秒前
王金金发布了新的文献求助10
10秒前
xiao完成签到 ,获得积分10
10秒前
NexusExplorer应助明天会更好采纳,获得10
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
能干的月光完成签到,获得积分10
12秒前
渢薃发布了新的文献求助10
12秒前
13秒前
Zzz完成签到 ,获得积分10
13秒前
乐乐应助YAY采纳,获得10
13秒前
13秒前
小糊涂仙儿完成签到 ,获得积分10
13秒前
pikaq777完成签到 ,获得积分10
15秒前
科研通AI6应助ZTT采纳,获得10
16秒前
16秒前
SciGPT应助粗暴的达采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5609955
求助须知:如何正确求助?哪些是违规求助? 4694535
关于积分的说明 14882709
捐赠科研通 4720767
什么是DOI,文献DOI怎么找? 2544982
邀请新用户注册赠送积分活动 1509819
关于科研通互助平台的介绍 1473013